I will present a light-front spectator model for the proton that incorporates the gluonic degree of freedom. The model is based on light-front wave functions modeled from the soft-wall anti–de Sitter/QCD prediction, which allows us to explore the gluonic structure within the proton. Using this model, we have successfully predicted key results for gluon transverse momentum distributions (TMDs)...
In this work, we demonstrate quantum advantage for simulating dynamics of multiple particles in the (3+1)-d QCD Hamiltonian on the light front, especially in the high-energy physics phenomena of an incoming quark jet or gluon jet scattered on the nuclear medium. Using quantum simulation with direct encoding, we provide an universal framework to simulate jet particles, and it is efficient in...