

· Institute of Particle Physics 粒子物理研究所

Muon-Proton Scattering Experiment

尹航 华中师范大学

第三届惠州高精度前沿会议

April 21, 2025

A fundamental property of the proton

The proton radius is a basic quantity in nuclear and particle physics
 Plays a crucial role in hydrogen atomic energy level calculation and QED tests

○ The Proton Radius Puzzle (PRP):

Muon vs. electron: hints of potential flavour dependent interactions

○ A global research frontier:

 Ongoing efforts: PRad (JLab), MUSE (PSI), Amber (CERN) ...

Still an open and active topic in both atomic and particle physics

Proton charge radius Puzzle

Back to 2013, many interest on the proton charge radius
 The Proton Radius Puzzle (PRP)

Proton charge radius

Two ways to measure it: Atomic energy levels

$$\Delta E_1 = \frac{2\pi a}{3} \left| \phi^2(0) \right| \left\langle r_E^2 \right\rangle$$

- Lamb Shift: finite size of proton changes hydrogen energy levels
- Extract from hydrogen spectroscopy

$$E_{nS} \cong -\frac{R_{\infty}}{n^2} + \frac{L_{1S}}{n^3}$$
$$L_{1S}(r_p) = 8171.634(4) + 1.5645 \langle r_p^2 \rangle \text{ MHz}$$

Two measurements required to determine R_{∞} and r_p

- A single narrow transition: $1S 2S (\Delta v = 1.3 Hz)$
- Other transitions: natureal width ~ MHz Each measurement, combiend with 1S - 2S, yields a correlated pair (R_{∞} , r_p)

Proton charge radius

○ Two ways to measure it:

- Atomic energy levels
- Scattering experiments

Electromagntic form factor

Measure the differential cross-section

Phys. Rev. 103 (1956) 1454-1463

Current status of proton charge radius

Current status of proton charge radius

Current status of proton charge radius

μp scattering: essential inputs

Expected sensitivities from MUSE

Measure form factor as a function of Q^2

MUSE Physics

- Cepton-universality
 - Simultaneous electron and muon scattering experiment
 - Direct test of LU
- Radiative corrections
 Muon is much heavier than electron
- Two photon exchange

Muon-Proton Elastic Scattering

Amber experiment

Compass -> Amber (NA66): Apparatus for Meson and Baron Experimental Research

- A fixed target experiemtn at M2 beam line
- Beam: muon, proton, pion, kaon from 50 GeV to 280 GeV
- Physics:
 - Phase-I (2020-2025): dark matter, proton radius puzzle (100 GeV muon beam), pion and kaon PDFs
 - Phase-II: planning

• Q^2 : ~ 10^{-3}

Amber Sensitivity

HIAF muon source

- ・ HIAF可以利用HFRS束线产生缪子束流
 - 动量: 500MeV/c 7.5GeV/c
 - 产额: 10⁶ 10⁷ μ/s
 - ・ 束斑大小: 10cm*10cm
 - ・ 经过特殊设置, 纯度可以达到100%

HIAF muon source

• After beam purification • $3 \times 10^5 \ \mu^-/s$ • $2.4 \times 10^5 \ \mu^+/s$

10⁻²

1000

3000

4000

6000

Pz [MeV/c]

1000

2000

3000

4000

2000

Pz [MeV/c]

HIAF muon source

• After beam purification • $3 \times 10^5 \ \mu^-/s$ • $2.4 \times 10^5 \ \mu^+/s$

How about a new muon-proton scattering experiment in China?

4000

Pz [MeV/c]

1000

2000

3000

4000

10⁻²

1000

2000

3000

Pz [MeV/c]

Precision of current results

- Muonic hydrogen: 0.046%
- Cliectronic hydrogen: 0.88%
- © Electron scattering: 0.68%
- O Muon scattering: 0.2% (MUSE) , 1% (Amber)

A new muon-proton scattering experiment in China:
 0.1% (our target)

A new proposal

O Based on the Geant4 simulation:

● codes from Prof. Weizhi Xiong (熊伟志, SDU)

How to achieve this?

The proton radius measurement prefers a low energy muon beam!

- \bigcirc Acceptance: $10^o 100^o$
- Running for 12 months
- Expected stat. uncertainty

dominated by syst. Uncertainty

Beam	Absoluate uncer. (fm)	Relative uncer.
1 GeV	0.0021	0.24%
3 GeV	0.005	0.6%
7 GeV	0.008	0.7%

4/21/2025

Muon-Proton Elastic Scattering

Large-x PDFs

○ Also can be used to probe the proton PDFs with large-x

PDFs region

PDFs region

Other measurements?

• New Physics:

- Lepton universality: electron and muon
- Oark sector

Neutron radius? (different targets)
 With deuteron (proton+neutron)
 With triton (proton+2 neutron)

More?
Other targets?
Be, C, Al, Ca, Fe, Ag, Au ...

Conclusion + Discussions

- The proton charge radius needs more experimental inputs
 MUSE @ PSI; Amber @ CERN; PRad @ Jlab ...
- A new muon-proton scattering experiment in China
 - Measure the proton radius: 0.1% (most precise result from lepton scattering exp.)
 - The cost of detector looks reasonable: $\sim 10 M CNY$
- O More physics motivations:
 - Measure radius of other nucleons
 - Large x of proton PDFs
 - Dark matter
- Letter of interest: the end of this year

Conclusion + Discussions

群聊: 缪子-质子散射实验讨论

该二维码7天内(4月27日前)有效,重新进入将更新

us needs more experimental inputs CERN; PRad @ Jlab ...

cattering experiment in China dius: 0.1% (most precise result from lepton scattering exp.) oks reasonable: $\sim 10 M CNY$

ons:

r nucleons

You are more than welcome to join us!

end of this year

O Beam Hodoscope: 2 laryers

Thin plastic scintillators (BC-404)

Timing information of the incident particles

SiPM for readout

TABLE VI. Beam hodoscope detector requirements			
Parameter	Performance Requirement	Achieved	
Time Resolution	$<\!100~\mathrm{ps}$ / plane	✓ 80 ps	
Efficiency	99%	√ 99.8%	
Positioning	≈1 mm, ≈1 mr	not attempted; easy – calibrated by data	
Rate Capability	$3.3~\mathrm{MHz}$ / plane	\checkmark >10 MHz / plane	

○ GEM detectors: 2 layers

• 5 μm copper-clad 50 μm Kapton-layers

- Argon + CO_2 , $10 \times 10 \ cm^2$
 - incident particle tracking

TABLE VII. GEM detector requirements				
Parameter	Performance Requirement	Achieved		
Resolution $100 \ \mu m$ / element		\checkmark 70 $\mu{ m m}$		
Efficiency	98%	√ 98%		
Positioning	${\approx}0.1~{\rm mm},{\approx}0.2~{\rm mr}$	not attempted; easy		
Rate Capability	$3.3~\mathrm{MHz}$ / plane	$\checkmark~5~\mathrm{MHz}$		
Readout Speed	$2~\mathrm{kHz}$ / 20% deadtime	$1~{\rm kHz}$ / 100% deadtime		

4/21/2025

Beam Monitor: 3 layers
 plastic scintillators: BC-404
 PMTs for readout
 Timing: for PID

750 mm

• Target:

- Liquid hydrogen: 20 K
- 125 μm thick aluminized Kapton

supply/vent tubes

fill/return tube with VCR connection

alignment tubes (2x)

○ Veto detector:

Scintillators

Veto events hit entrance window material: pions

Parameter	Performance Requirement	Achieved	
Time Resolution	1 ns / plane	not attempted; easy	
Efficiency	99%	not attempted; easy	
Positioning	$\approx\!\!1$ mm, $\approx\!\!1$ mr	not attempted; easy	
Rate Capability	$1~\mathrm{MHz}$ / plane	not attempted; easy	

○ Scattered particle detector:

• STT: Straw chambers

• High position resolution, and high efficiency

Parameter	Performance Requirement Achieved			
Position Resolution	$150~\mu{ m m}$	\checkmark <120 $\mu{\rm m}$		
Efficiency	99.8% tracking	\approx 99% in prototype; moderate		
Positioning	$\approx 0.1 \text{ mm}, 0.2 \text{ mr in } \theta$	not attempted; moderate		
Positioning	≈0.5 mr pitch, yaw, roll	not attempted; moderate		
Positioning	50 μm wire spacing	not attempted; moderate		
Rate Capability	$0.5 \mathrm{MHz}$	not attempted; easy		

1st plane

4/21/2025

- Calorimeter:
 - Lead-glass
 - Stutdy radiative correction, PID

Pion form factor

To understand the hadronic structure

Mesured use electron-proton scattering

Neutron Magnetic form factor

- Use polarized ${}^{3}He(ppn)$ gas target
- © Electron Beam energy (Jlab): 2.6 GeV, 4.2 GeV

Virtual compton scattering

Muon-Proton Elastic Scattering

 μ 束流产额

 最大产额: 8.5×10⁶ μ⁺/s@3.5GeV

- ・ 对于μ⁻ 束流:
 - Pz<1GeV: ⁷⁸Kr¹⁹⁺最佳
 - 1GeV<Pz<2GeV: ¹⁸O⁶⁺最佳

• Pz>2GeV:

• 质子最佳

• 最大产额: 6×10⁶ μ⁻/s@1.5GeV

μ 束流

proton

4000

5000

6000

10000 Hinx Jack 2000 Min Jack

6000

5000

4000

3000

1000

2000 Kr78

0^L

1000

2000

3000

7000

Pz [MeV/c]

MUSE Beam flux

O Form factors for both electron and muon scattering

Systematic uncertainties cancellation

Beam momenta	Charge	Total Flux	π Flux	μ Flux	e Flux
MeV/c		MHz	MHz	MHz	MHz
115	+	9	0.6	2	6
153	+	18	8	2	8
210	+	70	60	5	6
115	-	6	0.06	0.2	6
153	-	9	0.8	0.2	8
210	-	12	6	0.5	6

Form factors

The Rosenbluth formula

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4(\theta/2)} \frac{E_3}{E_1} \left[\frac{G_E^2 + \tau G_M^2}{(1+\tau)} \cos^2\left(\frac{\theta}{2}\right) + 2\tau G_M^2 \sin^2\left(\frac{\theta}{2}\right) \right]$$

With
$$au=rac{Q^2}{4M_p^2}$$

• Charge distribution: $G_E(Q^2)$

• Magnetic moment distribution: $G_M(Q^2)$

$$G_{E}(0) = \int \rho(\vec{r}) d^{3}\vec{r} = 1$$

$$G_{M}(0) = \int \mu(\vec{r}) d^{3}\vec{r} = \mu_{p} = +2.79$$

$$G_{M}(0) = \int \mu(\vec{r}) d^{3}\vec{r} = \mu_{p} = +2.79$$

$$At \text{ very low } Q^{2}: \tau = \frac{Q^{2}}{4M_{p}^{2}} \approx 0$$

$$\frac{d\sigma}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right) \approx G_{E}^{2}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{0} = \frac{\alpha^{2}}{4E_{1}^{2}sin^{4}(\theta/2)} \frac{E_{3}}{E_{1}}cos^{2}\left(\frac{\theta}{2}\right)$$

Form factors vs. proton charge radius

With low momentum transfer, as *qR* << 1
 virtual photon: $\lambda \sim \frac{1}{q} \gg R$ Tayler expansion of $e^{i\vec{q}\cdot\vec{r}}$

 $F(\vec{q}^2) = \int \rho(\vec{r}) \, e^{i\vec{q}\cdot\vec{r}} d^3\vec{r}$

The experimental observables

 \odot The differential cross-section is expressed in terms of Q^2 , E_3 and θ

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4(\theta/2)} \frac{E_3}{E_1} \left[\frac{G_E^2 + \tau G_M^2}{(1+\tau)} \cos^2\left(\frac{\theta}{2}\right) + 2\tau G_M^2 \sin^2\left(\frac{\theta}{2}\right) \right]$$

Only one independent variable

 \bigcirc Both Q^2 , E_3 can be expressed in terms of θ

$$E_{3} = \frac{E_{1}M_{p}}{M_{p} + E_{1}(1 - \cos\theta)} \qquad \qquad Q^{2} = \frac{2M_{p}E_{1}^{2}(1 - \cos\theta)}{M_{p} + E_{1}(1 - \cos\theta)}$$

 \bigcirc At very low Q^2

• Count the number of scattered electron in a given angle !

Muon-Proton Elastic Scattering

*p*₃

 p_4

D

e⁻

 p_1

The Mott scattering formula

$$\frac{d\sigma}{d\Omega} = \frac{(Z\alpha)^2 E^2 \left(1 - \beta^2 \sin^2\left(\frac{\theta}{2}\right)\right)}{4p^4 \sin^4\left(\frac{\theta}{2}\right)} (\hbar c)^2 (mb \cdot sr^{-1})$$

Z: the number of proton in a target nucleon. = 8 for Oxygen α : the fine structure constant, 1/137 *E*, *p*: energy of the incident muon, $E \approx p$, GeV β : $v/c \approx 1$ θ : scattering angle $\hbar c$: constant, $(\hbar c)^2 = 0.389380 \ GeV^2 \cdot mb$ *mb*: the cross-section 1 $mb = 10^{-27} \ cm^2$ *sr*: steradian, solid angle

44

PRad uncertainty

ltem	r_p uncertainty (fm)	n_1 uncertainty	n_2 uncertainty	
Event selection	0.0070	0.0002	0.0006	
Radiative correction	0.0069	0.0010	0.0011	
Detector efficiency	0.0042	0.0000	0.0001	
Beam background	0.0039	0.0017	0.0003	
HyCal response	0.0029	0.0000	0.0000	
Acceptance	0.0026	0.0001	0.0001	
Beam energy	0.0022	0.0001	0.0002	
Inelastic ep	0.0009	0.0000	0.0000	
G^p_M parameterization	0.0006	0.0000	0.0000	
Total	0.0115	0.0020	0.0013	

Amber experiment

Scattering angle

