

基于惠州大科学装置的 **岛保有的 岛 岛 β β β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β β λ β λ β λ β λ β λ β β λ β λ β λ β λ β λ λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β λ β**

¹中国科学技术大学 || 近代物理系 ²近代物理研究所, ³东江实验室 2025/04/21, 广东惠州

1. 缪子属性及来源

诺奖得主CD Anderson于1936年 从宇宙线观测实验中发现缪子

基本粒子, m_e < m_µ < m_p
不稳定, 平均寿命~2.2 μs
自旋 1/2, 点粒子, 100%极化, 量子磁探针
宇宙线缪穿透性强, 天然成像探针
Muonic X-ray能量高, 元素/同位素分析探针

缪子科学研究前沿

分子: Content of the second static second second

CSNS II: 靶站, 1条表面缪束线, 1台μSR谱仪
建设周期: 2024 - 2029
10⁵ - 10⁷ μ⁺/s, 极化度> 95%, 脉宽130 ns

C东·东莞 Muon station for sciEnce technoLOgy and inDustrY

2024.1 2025.1 2026.1 2027.1 2028.1 2029.1 2030.1

十强

CSNS MELODY 2025 [2025.110-1] CSN. RE 2nd Workshop on Muon SciEnce TechnolOgy and InDustr

用户研讨会

10 00

2025/03/17

2025/01/10

TIMII PODEL.

Review Report of the Physics Design of MELODY at the CSNS

Committee Membership:

Adrian Hillier, ISIS Neutron and Muon Facility, STFC/UKRI, UK (chair) Stephen Cottrell, ISIS Neutron and Muon Facility, STFC/UKRI, UK Naritoshi Kawamura, KEK, Japen James Lord, ISIS Neutron and Muon Facility, STFC/UKRI, UK Yasuhiro Miyake, KEK, Japan Thomas Prokscha, Paul Scherrer Institut, Switzerland Zaher Salman, Paul Scherrer Institut, Switzerland Isao Watanabe, RIKEN, Japan

100

基金委重大仪器专家组现场验收

✓ 重大仪器研制项目《高流强缪子源关键技术研究》
✓ 总负责人: 唐靖宇 || 谱仪子课题: 叶邦角
✓ 样机探测系统计数性能优于ISIS谱仪
✓ 精确测量样品局域磁场
✓ 重大仪器结题优秀, 谱仪为亮点工作

13

国内缪子源: SHINE

国内缪子源: SHINE

国内缪子源: SHINE

- ▶ 缪子源已列入SHINE Science Plus升级计划
- ▶ SHINE Shaft#2束测在2025-2026年开展
- ▶ 预期~2030完成全缪束建设
- ▶ 科学实验面向应用 (muSR等) 需求
- > 需要升级和进一步优化,以保持基础物理学领域的竞争力
 - 上科大刘志教授做"Future SHINE Science"报告

SHINE电子束应用研讨会参观

High-Intensity Heavy Ion Accelerator Facility (HIAF)

China initiative Accelerator Driven System (CiADS)

2024.05.14

国内缪子源: CIADS

- 表面缪极化度: up to 99%
- 一期: MuT-a, L1&R1 || 二期: MuT-b, L2&R2

国内缪子源: HIAF

High energy FRagment Separator (HFRS)

11. 基于缪子束的缪子自旋谱学

µSR: muon spin rotation/relaxation/resonance

<u>PRL Vol. 132 (2024)</u> Front Cover: Lei Shu et al. A representation of the structure of polycrystalline La₃Ni₂O₇ $-\delta$

μSR谱学优势

- ●局域量子磁探针 (no need to search reciprocal space)
- •独特的时间窗 (complementary to NMR/neutron scattering)
- ●弱磁性灵敏 (small moment magnetism ~ $10^{-3} \mu_B$ /Atom)
- ●随机/不均匀磁性分布 (e.g. spin glasses)
- •短程有序 (where neutron scattering is not sensitive)
- •高度极化, 可零场实验 (independent of temperature, unique measurements without disturbance of the system)
- •单粒子探测 (with extremely high sensitivity)
- ●样品状态无限制 (in choice of materials to be studied)

μSR谱学应用

Nat. Rev. Meth. Primer : Muon Spin Spectroscopy

Courtesy Dr. Adrian Hiller @ ISIS Muons

25

μSR谱学应用

26

μSR国内用户统计

Web of Science analysis (muon spin spectroscopy / muon spin relaxation / muon spin rotation) 2025/04 邓力,陈良文*: PLA 2024, PRB 2024 @ 东江实验室/近物所 (第一性原理计算及实验数据微观解析)

国内用户亮点文章

@J-PARC

@PSI

赵金奎教授课题组 @ 松山湖实验室

- Signatures of the quantum spin liquid state in triangular-based zig-zag polyaromatic hydrocarbon radicals, Chemical Science 16, 6345 (2025)
 - μSR数据证明新合成的自由基有机物是一种新的量子自旋液体候选者

殷嘉鑫副教授课题组@南方科大

- Evidence for time-reversal symmetry-breaking kagome superconductivity, Nature Materials 23, 1639-1644 (2024)
- ➢ 证明了笼目超导体CsVSb存在时间反演对称破缺TRSB

T (K)

Temperature (K)

 $A_{ZF}(t)$

殳蕾教授课题组 @ 复旦大学

Editor's Suggestion

- Evidence of Spin Density Waves in La₃Ni₂O_{7- δ}, Physical Review Letters 132, 256503 (2024)
- 在新型镍基超导体中首次发现体磁性,为奇异超导电性研究提供关键磁性基态依据

36

连续束

脉冲束

$FoM = Rate \bullet A^2$

驰豫频率表征范围 $\propto 1/\sigma_t$

σ,即时间分辨,由束流脉宽和谱仪定时精度贡献

Z. Pan et al NIMA 2022

β detected Nuclear Magnetic Resonance (β-NMR)

β detected Nuclear Magnetic Resonance (β-NMR)

37

TRIUMF

βNMR谱仪

主要测量方法: RF resonance

主要测量方法: RF resonance

主要测量方法: RF resonance

Asymmetry (%)

-40

 δ / ppm

-50

-60

-30

-20

主要测量方法: spin-lattice relaxation

0.5

T (K)

主要测量方法: spin-lattice relaxation

- ◆**高信号幅度**: βNMR 通过测量极化离子的衰变β电子(10⁷个原子核),常规NMR通过外磁场激励 样品产生微弱precession信号并由RF线圈捕获信号(需要10¹⁷个原子核,样品量大,只能获取bulk information), βNMR比之灵敏度高10个数量级
- ◆**高极化度**:使用极化激光调制离子束极化度,可以达到1%-100%(⁸Li+可以做到80%),传统NMR 是由加在样品上的外磁场激励产生微软极化度<<1%(normally 0.001%),βNMR比之灵敏度高5个数量 级
- ◆高灵敏度:结合以上两点因素,βNMR比传统NMR灵敏度高10个数量级
- ◆可测薄样品、可调节注入深度: 高灵敏度决定了βNMR 对样品量需求小, 10⁶个原子核量级;
 - 极化离子束能量低能,动量可调,可以获取样品不同深度信息(2-200 nm)
- ◆放射性离子束RIB装置可提供多种短寿命核素:元素周期表大部分核素均可生产

Spectra quality comparison of Mg-ATP binding in EMIM-Ac

NMR (72 h)

Manuscript in preparation by Monika Stachura

测量范围广, 与多种磁性表征技术互补!

Jun Sugiyama, Spin polarized beam for battery materials research: $\mu \pm SR$ and β -NMR, Hyperfine Interact (2019) 240: 17

≻基础研究

- 放射性核素核结构(磁矩、电极矩)、未知能级结构
- 原子核半径 (charge radius, mass radius)
- Beta衰变、对称破缺、新物理

▶应用研究 (analogue of NMR and µSR)

- 凝聚态研究(金属、绝缘体、超导、磁性物质、离子导体、 半导体、半金属...)
- 化学 (有机物...)
- 生命科学(组成生命物质的多种元素,如ATP-Mg、阿尔 兹海默症-Cu、DNA-Na...)
- 能源科学(锂/钠/锌电池...)

应用领域

1A 1 H 1.00794 3 Li 8.941 11 Na	2A 4 Be 12157 12 Mg		已开展研究的核素									http://ch ©2010 T About C 3A 5 B 10.811 13 AI	emistry a fodd Hel hemistry 4A 6 C 120107 14 Si	5A N 15 P	6A 6A 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7A 9 F 17 CI	8A 2 He 4 002602 10 Ne 20.1797 18 Ar
11 1000 10	14 3050	3B	4B	5B	6B	7B		— 8B —		1B	2B	2 48 1512	28.0855	30 973762	32.065	35.453	39 948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
10.0957	40.078	44.955912	47.867	10.9415	51.9961	54.938045	55.845	58.933195	58.6934		65.38	69.723	72.64	74.92160	78.96	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I.	Хе
85.4678	87.62	88.90585	91.224	92.90638	95.96	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293
55	56	5/-/1	12	73	74	75 De	76	11	78	79	80	81	82	83	84	85	86
CS	Ва	100000000	HI	la	vv	Re	US	Ir	Pt	Au	нg	11	PD	ВІ	PO	At	RN
87	88	89-103	104	105	105.64	105.207	190.23	102.217	110	190 900009	112	113	114	115	116	117	118
Er	Ra	00 100	Rf	Dh	Sa	Bh	Hs	Mt	Ds	Ra	Cn	Unt	Uua	Hun	Hub	llus	Iluo
(223)	[2:26]	Actinides	[267]	12681	(271)	[272]	[270]	[276]	[281]	(280)	12851	(284)	[289]	[288]	[293]	12941	[294]
				Care of the			1	Let of				400.01		40004		- Level -	
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			138.90547	140.116	140.90765	144 242	[145]	150.36	151 964	157.25	158.92535	162,500	164 93032	167.259	168.93421	173.054	174.9668
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			[227]	232.03806	231.03588	238.02891	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]

Galactic cosmic ray production

16th International Conference on Muon Spin Rotation, Relaxation and Resonance (2025/07/20 – 07/25)

The conference is being jointly organized by the Centre for Molecular and Materials Science at TRIUMF, Simon Fraser University, the University of British Columbia, and Memorial University of Newfoundland. It will cover all aspects of the use of muon spectroscopy and β -NMR in condensed matter, materials and molecular sciences,

15th International Conference on Muon Spin Rotation, Relaxation and Resonance (2023/08/28 – 09/02)

⁸Li β<mark>NMR</mark> studies of Epitaxial Thin Films of the 3D topological Dirac semimetal Sr₃SnO

Inverse Laplace Transform Approaches to β NMR Relaxation

The Site and High Field β NMR Properties of ⁸Li⁺ Implanted in α -Al₂O₃

Effects of the rhombohedral distortion in LaAlO₃ on the quadrupolar splitting of the implanted ⁸Li⁺ NMR

相关设施: ISAC @ TRIUMF

相关设施: ISOLDE @ CERN

相关设施: BECOLA @ Michigan State University

b-NMR equipment

55

IV. 总结

■ 缪子源/离子源

▶ 缪子:

•

- 运行中: TRIUMF, PSI, MuSIC-RCNP, ISIS, J-PARC (mainly for applied sciences)
 - FermiLab, CERN (only for particle physics)
- 在建: MELODY-CSNS, RAON
- 规划: SHINE@Shanghai Tech, CiADS/HIAF@IMP, SEEMS@SNS
- ▶ 离子:
- TRIUMF, BECOLA, ISOLDE@CERN ...

主要应用

- ▶ 缪子:
- Muon spin spectroscopy
- Muonic X-ray Elemental analysis
- ▶ 离子:
- Beta-detected NMR

- 感谢µSR、MIXE、缪子成像领域所有老师、同事及合作者对本人工作的支持!
- 感谢国自然基金委、自然资源部、广东省粤惠联合基金、小米公益基金会对各项研究工作的经费支持!