Vortex states as a new tool for hadronic physics

Igor Ivanov

School of Physics and Astronomy, SYSU, Zhuhai

3rd Huizhou Symposium on High-precision Nuclear Physics at Large Facilities

IMP CAS, Huizhou

April 20, 2025

Vortex states: an introduction

2/24

Cylindrical wave with phase vortex

Coordinate dependence: $\psi(\mathbf{r}) \propto e^{i\ell\varphi_r}$

Intrinsic orbital angular momentum (OAM): $\langle L_z \rangle = \hbar \ell$.

Vortex beams in momentum space

- Plane wave (PW): $\phi(\mathbf{k}) \propto \delta^{(3)}(\mathbf{k} \mathbf{k}_0)$.
- Bessel state:

$$\phi(\mathbf{k}) \propto \delta(k_z - k_{0z}) \, \delta(k_\perp - \varkappa) \, e^{i \ell \varphi_k}$$

• Laguerre-Gaussian (LG) wave packets: normalized vortex states.

Vortex states are coherent superpositions of plane waves with azimuthal-angle dependent phase factors.

This coherence makes vortex states a unique probe of particle structure and interactions.

Igor Ivanov (SYSU, Zhuhai)

nac

Spin-OAM entangled states

- Exact solutions for vortex photons and electrons: [Jentschura, Serbo, PRL106 (2011) 013001; Bliokh et al, PRL107 (2011) 174802; Karlovets, PRA 86 (2012) 062102; Serbo et al, PRA92 (2015) 012705] and later works.
- Spin and OAM can be entangled \rightarrow many exotic polarization states possible!

[Sarenac et al, New J. Phys. 20 (2018) 103012]

Spin-OAM entangled states

An impressive proposal from the XJTU team: Li et al, 2504.11113: Generation of Relativistic Structured Spin-Polarized Lepton Beams.

OAM-spin entangled vortex electron beams can be obtained via interaction with specially designed velocity-matched THz waveguide modes.

 \Rightarrow more details in talk by Jian-Xing Li on Monday.

Igor Ivanov (SYSU, Zhuhai)

6/24

- Optical range vortex photons routinely studied and used since the 1980s, [Allen et al, PRA45, 8185 (1992)], with ℓ up to 10000: [Fickler et al, PNAS 113, 13642 (2016)].
- Single mode vortex X rays, e.g. E = 1 keV, $\ell = 30$ [Lee et al, Nat. Photonics 13 (2019) 205].
- Theoretical proposal: inverse Compton scattering of vortex optical photons off GeV range electrons [Jentschura, Serbo, PRL106 (2011) 013001] and the follow-up papers.

• Much higher cross section with ultrarelativistic partially stripped ions instead of electrons [Serbo, Surzhykov, Volotka, Ann. Phys. (Leipzig) (2021) 2100199], e.g. at the Gamma-Factory at CERN [Krasny, arXiv:1511.07794].

Э

Sac

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Vortex photons

Recent big news from SJTU: Wei et al, 2503.18843:

Experimental Evidence of Vortex γ -Photons in All-Optical Inverse Compton Scattering.

- All-optical scheme, using multi-MeV electrons from LWFA.
- γ energies peak at 0.8 MeV; OAM expected to be close to the driving LG beam ℓ = 7.
- The evidence of vorticity is indirect (anomalous broadening), but it is still a big step forward!

- 2010-2011: experimental demonstration of vortex electrons: [Uchida, Tonomura, Nature 464, 737 (2010)]; [Verbeeck, Tian, Schattschneider, Nature 467, 301 (2010)]; [McMorran et al, Science 331, 192 (2011)]. Typical values: E = 300 keV, ℓ up to 1000, focusing to ≈ 1 Å focal spot.
- Proposals for higher energy vortex electrons: production in magnetic fields [Karlovets, NJP 23 (2021) 033048], via scattering [Karlovets et al, EPJC 83 (2023) 372], in heavy ion collisions [Zou, Zhang, Silenko, J.Phys.G50 (2023) 015003].
- Slow vortex neutrons: first reported in 2015, unambiguously demonstrated in 2022 [Sarenac et al, Sci. Adv.8, eadd2002 (2022)].
- Slow vortex He atoms [Luski et al, Science 373 (2021) 1105].

What about vortex protons? Ions? muons? Some experimental work is underway! ⇒ talks by Zou Liping on Monday and by Huang Junren on Tuesday.

3

Sac

・ロト ・雪 ト ・ ヨ ト ・

- 2010-2011: experimental demonstration of vortex electrons: [Uchida, Tonomura, Nature 464, 737 (2010)]; [Verbeeck, Tian, Schattschneider, Nature 467, 301 (2010)]; [McMorran et al, Science 331, 192 (2011)]. Typical values: E = 300 keV, ℓ up to 1000, focusing to ≈ 1 Å focal spot.
- Proposals for higher energy vortex electrons: production in magnetic fields [Karlovets, NJP 23 (2021) 033048], via scattering [Karlovets et al, EPJC 83 (2023) 372], in heavy ion collisions [Zou, Zhang, Silenko, J.Phys.G50 (2023) 015003].
- Slow vortex neutrons: first reported in 2015, unambiguously demonstrated in 2022 [Sarenac et al, Sci. Adv.8, eadd2002 (2022)].
- Slow vortex He atoms [Luski et al, Science 373 (2021) 1105].

What about vortex protons? Ions? muons? Some experimental work is underway! \Rightarrow talks by Zou Liping on Monday and by Huang Junren on Tuesday.

Sac

(日) (空) (日) (日) (日)

Nuclear and particle physics with vortex states

4 E b

10/24

Э

Sac

Nuclear and particle physics with vortex states

So far only theoretical proposals...

Recent review: Ivanov, Prog.Part.Nucl.Phys. 127 (2022) 103987 [arXiv:2205.00412]

Igor Ivanov (SYSU, Zhuhai)

Vortex states for hadronic physics

10/24

Example 1: a novel nuclear physics tool

Vortex states for hadronic physics

э

Sac

Э

< A

Igor Ivanov (SYSU, Zhuhai)

NEEC: Nuclear excitation by electron capture

Internal conversion: Atomic electron transitions \leftrightarrow nuclear excitations.

Controlling long-lived nuclear isomer state via electron capture by an ion: [Pálffy et al, PRL99, 172502 (2007); Chiara et al, Nature 554, 216 (2018)]

Capture of vortex electrons on specific orbitals \rightarrow strong enhancement predicted [Wu et al, PRL128, 162501 (2022)].

Selective excitation of nuclear multipole transitions

- Giant resonances in nuclear excitation: collective motion of *p* vs *n* densities.
- Photo-nuclear reactions dominated by the giant dipole resonance (GDR).
- For a vortex gamma photon, selection rules change \rightarrow effectively suppressing GDR [Lu et al, PRL131, 202502 (2023); arXiv:2503.12812] \Rightarrow talk by Jian-Xing Li on Monday.
- But b must be controlled within a few fm → serious challenge!

Elastic neutron scattering

Cold neutron scattering on nucleus [Schwinger, PR 73, 407 (1948)]:

- strong interaction amplitude a,
- electromagnetic interaction via neutron magnetic dipole moment μ_n .

The total scattering amplitude (\vec{n} , \vec{n}' — unit vectors; λ , λ' — helicities):

$$f_{\lambda\lambda'}(\vec{n},\vec{n}') = w_{\lambda'}^{\prime\dagger}(a+i\vec{\sigma}\cdot\vec{B})w_{\lambda}, \quad \vec{B} = \beta \frac{[\vec{n}\times\vec{n}']}{(\vec{n}-\vec{n}')^2}, \quad \beta = \frac{\mu_n Z e^2}{m_p c^2}.$$

Strongly peaked in the forward direction: $\vec{n}' \approx \vec{n}$. If neutron is polarized along $\vec{\zeta}$, the cross section summed over final polarizations is

$$\frac{d\sigma(\vec{n},\vec{n}',\vec{\zeta})}{d\Omega'} = |\boldsymbol{a}|^2 + |\vec{B}|^2 + 2(\vec{B}\cdot\vec{\zeta})\operatorname{Im}\boldsymbol{a}.$$

Not sensitive to ζ_z nor to $\operatorname{Re} a$.

Igor Ivanov (SYSU, Zhuhai)

Elastic vortex neutron scattering

Schwinger scattering changes for vortex neutron [Afanasev, Karlovets, Serbo, PRC 103 (2021) 054612]. $p_x \blacklozenge$

- Cross section peaks at \vec{n}' parallel to the \vec{p} , not $\vec{n} \propto \langle \vec{p} \rangle$.
- \Rightarrow Sensitivity to ζ_z !
- \Rightarrow Helicity asymmetry reveals $\operatorname{Re} a!$

Predictions can be checked once high-flux vortex neutron beam is available.

Vortex neutron decay is by itself an interesting process: [Kou, Guo, Chen, PLB 862 (2025) 139332; Pavlov, Chaikovskaia, Karlovets, PRC 111 (2025) 024619].

Example 2: probing the phase of a scattering amplitude

Э

Vortex state scattering

Plane wave scattering $|k_1\rangle + |k_2\rangle \rightarrow |k_1'\rangle + |k_2'\rangle$:

- $\mathbf{K} = \mathbf{k}_1' + \mathbf{k}_2' = 0$ in the c.m. frame;
- differential cross section depends only on \mathbf{k}'_1 .

< □ > < 同 >

< E

Э

▶ < ∃ >

Vortex state scattering

Plane wave scattering $|k_1\rangle + |k_2\rangle \rightarrow |k_1'\rangle + |k_2'\rangle$:

- $\mathbf{K} = \mathbf{k}_1' + \mathbf{k}_2' = 0$ in the c.m. frame;
- differential cross section depends only on \mathbf{k}'_1 .

Vortex state scattering: $|\varkappa_1, \ell_1\rangle + |\varkappa_2, \ell_2\rangle \rightarrow |k_1'\rangle + |k_2'\rangle$.

- The final particles are $\text{PW} \rightarrow \text{detect}$ them with traditional detectors!
- $\mathbf{K} = \mathbf{k}_1' + \mathbf{k}_2'$ is not fixed \Rightarrow distribution over \mathbf{K} .
- A new dimension is available in vortex state scattering!

Accessing the Coulomb phase

Usual PW scattering: $\mathcal{M} = |\mathcal{M}| e^{i \Phi(\theta)}$ but we measure only $d\sigma \propto |\mathcal{M}|^2$.

Scattering of vortex states gives experimental access to the phase $\Phi(\theta)$ [Ivanov, PRD85, 076001 (2012); Ivanov et al, PRD94, 076001 (2016); Karlovets, EPL 116, 31001 (2016)].

 $\mathcal{M} = c_a \mathcal{M}_a(k_{1a}, k_{2a}; k'_1, k'_2) + c_b \mathcal{M}_b(k_{1b}, k_{2b}; k'_1, k'_2), \quad d\sigma \propto |c_a \mathcal{M}_a + c_b \mathcal{M}_b|^2$ Scattering angles are different: $\theta_a \neq \theta_b \Rightarrow$ phases are different $\Phi(\theta_a) \neq \Phi(\theta_b)$.

The interference term is sensitive to $\Phi(\theta)$ and can be extracted via azimuthal asymmetry.

Probing the phase of the total amplitude

- Example of elastic $ee \rightarrow ee$ scattering [Ivanov et al, PRD94, 076001 (2016)]: left: real \mathcal{M} ; right: $\Phi(\theta) = a \ln(1/\theta)$, as in the Coulomb phase.
- Can be very helpful in "complete experiment" measurements of hadron photoproduction, such as $\gamma p \rightarrow K^+ \Lambda$, with many interfering partial waves, e.g. [Wunderlich, Beck, Tiator, PRC 89 (2014) 055203].
- The relative phase between the EM formfactors of the proton G_E vs G_M in the timelike region via vortex $p\bar{p} \rightarrow e^+e^-$ annihilation in fully unpolarized setting [Korchagin, PRD 111 (2025) 076005].

Sac

Probing the phase of the total amplitude

- Example of elastic $ee \rightarrow ee$ scattering [Ivanov et al, PRD94, 076001 (2016)]: left: real \mathcal{M} ; right: $\Phi(\theta) = a \ln(1/\theta)$, as in the Coulomb phase.
- Can be very helpful in "complete experiment" measurements of hadron photoproduction, such as $\gamma p \rightarrow K^+ \Lambda$, with many interfering partial waves, e.g. [Wunderlich, Beck, Tiator, PRC 89 (2014) 055203].
- The relative phase between the EM formfactors of the proton G_E vs G_M in the timelike region via vortex $p\bar{p} \rightarrow e^+e^-$ annihilation in fully unpolarized setting [Korchagin, PRD 111 (2025) 076005].

Sac

Probing the phase of the total amplitude

- Example of elastic $ee \rightarrow ee$ scattering [Ivanov et al, PRD94, 076001 (2016)]: left: real \mathcal{M} ; right: $\Phi(\theta) = a \ln(1/\theta)$, as in the Coulomb phase.
- Can be very helpful in "complete experiment" measurements of hadron photoproduction, such as $\gamma p \rightarrow K^+ \Lambda$, with many interfering partial waves, e.g. [Wunderlich, Beck, Tiator, PRC 89 (2014) 055203].
- The relative phase between the EM formfactors of the proton G_E vs G_M in the timelike region via vortex $p\bar{p} \rightarrow e^+e^-$ annihilation in fully unpolarized setting [Korchagin, PRD 111 (2025) 076005].

Sac

4 E

Example 3: a new tool for spin physics

Based on:

Ivanov, Korchagin, Pimikov, Zhang, PRL 124 (2020) 192001, PRD 101 (2020) 096010.

Igor Ivanov (SYSU, Zhuhai)

Vortex states for hadronic physics

20/24

Polarized mesons from unpolarized e^+e^-

Consider PW e^+e^- annihilation into a spin-1 meson V:

$$\mathcal{M}_{\zeta_1\zeta_2\lambda_V} = g \, \bar{v}_{\zeta_2}(k_2) \gamma_\mu u_{\zeta_1}(k_1) V_{\lambda_V}^{\mu*}(K) \quad \propto \quad \frac{\lambda_V}{\lambda_V} \cos \theta_V + 2\zeta \,.$$

Here ζ_1 , ζ_2 , and λ_V are the helicities of e^- , e^+ , V.

 $\sigma \propto (\lambda_V \cos \theta_V + 2\zeta)^2$. In unpolarized e^+e^- annihilation, the meson is also unpolarized:

$$\sigma(\lambda_V = +1) = \sigma(\lambda_V = -1).$$

Polarized mesons from unpolarized e^+e^-

Igor Ivanov (SYSU, Zhuhai)

Vortex e^+e^- annihilation: the amplitude $\zeta_1 = -\zeta_2 = \zeta$ dominates:

$$\mathcal{M}_{\zeta,-\zeta,\lambda_V} \propto \left(\lambda_V \cos \theta_V + 2\zeta \right) \left(\mathcal{J}_1 + 2\zeta \mathcal{J}_2
ight),$$

where \mathcal{J}_1 , \mathcal{J}_2 depend on the vortex parameters and are oscillating functions of energy.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Vortex e^+e^- annihilation: the amplitude $\zeta_1 = -\zeta_2 = \zeta$ dominates:

$$\mathcal{M}_{\zeta,-\zeta,\lambda_V} \propto \left(\lambda_V \cos \theta_V + 2\zeta \right) \left(\mathcal{J}_1 + 2\zeta \mathcal{J}_2
ight),$$

where \mathcal{J}_1 , \mathcal{J}_2 depend on the vortex parameters and are oscillating functions of energy. The unpolarized e^+e^- annihilation now depends on λ_V :

 $\sigma(\lambda_V = +1) \neq \sigma(\lambda_V = -1).$

Polarized mesons emerge from unpolarized e^+e^- annihilation! The origin: intrinsic spin-orbital interaction within vortex states! Helicities $\zeta = +1/2$ and $\zeta = -1/2$ have different spatial distributions!

A new perspective on the spin structure of the proton

- The structure of a high-energy proton is extremely complicated!
- Unintegrated structure functions, TMDs, spin/OAM of quarks and gluons, ... are studied via differential cross sections, SIDIS, spin asymmetries etc.
- Any source of complementary information will be very welcome!

Access to spin-sensitive properties via unpolarized, fully integrated cross sections

 \Rightarrow Vortex DIS as a new tool for exploring the proton spin structure!

23/24

nac

- Physics of vortex states is an emergent interdisciplinary field linking beam physics, atomic physics, optics, nuclear and particle physics.
- Vortex states offer new degrees of freedom never used in nuclear and particle physics:
 - initial-state adjustable OAM,
 - topologically protected coherence,
 - new dimensions in the final phase space,
 - much richer polarization options impossible for plane waves.
- Many remarkable effects, difficult or impossible for PW scattering, are theoretically predicted!
- A dedicated experimental effort is needed to verify these intriguing predictions.
 Every new experimental result ⇒ a PRL or higher!
- In Zhuhai, we are actively studying various novel opportunities offered by high-energy vortex states and are looking to extend cooperation!

Э

Sac

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

- Physics of vortex states is an emergent interdisciplinary field linking beam physics, atomic physics, optics, nuclear and particle physics.
- Vortex states offer new degrees of freedom never used in nuclear and particle physics:
 - initial-state adjustable OAM,
 - topologically protected coherence,
 - new dimensions in the final phase space,
 - much richer polarization options impossible for plane waves.
- Many remarkable effects, difficult or impossible for PW scattering, are theoretically predicted!
- A dedicated experimental effort is needed to verify these intriguing predictions.
 Every new experimental result ⇒ a PRL or higher!
- In Zhuhai, we are actively studying various novel opportunities offered by high-energy vortex states and are looking to extend cooperation!

Sac