第三届惠州大装置高精度核物理研讨会

惠州强子谱仪: 轻强子物理+中微 子束流研究奇特态+K束流物理

吴佳俊 (中国科学院大学)

第三届惠州大装置高精度核物理研讨会

2024.11.16

惠州 中国科学院近代物理所

目录

- 背景介绍
- ・p束流
- K介子束流
- 中微子束流
- 小结和展望

背景介绍

新的高亮度强 子,中微子束 流—新炮弹

憲州核中心大科学装置与 若干前沿领域进展-2022

詹文龙,中科院/近物所、东江实验室

探测技术: 高灵敏探测器制作

5 12 17 10 - 2026

背景介绍

- B-Ring上质子束流亮度: 1.8x10¹² pps (fast extraction, FE), 4.5x10¹¹ pps (slow extraction, SE)。
- 9.3GeV质子束流1.8x10¹² pps (FE)产生不同强子的数目:

Production of exotic hadrons in pp and nuclear collisions*

Jinhui Cheno,^{1,2} Feng-Kun Guoo,^{3,4,5,6} Yu-Gang Mao,^{1,2} Cheng-Ping Sheno,^{1,2} Qiye Shou^(0,1,2) Qian Wang^(0,7,8,6) Jia-Jun Wu^(0,4) and Bing-Song Zou^(0,9,3,5,6)

Nuclear Science and Techniques

撞奇异产生的基本过程,3个量

• 研究重子激发态! N^* , Δ^* 和 $\Sigma^*_{J,J,Xie \& B.S,Zou, PLB649 (2007) 405}$ 1. 利用同位旋筛子, $pp \rightarrow n\Sigma^+K^+, \Sigma^+K^+$ 只有Δ共振态。 来自邹冰松院士的PPT截图 2. 不同反应道的联合分析, 末态任意两个粒子的重散射, $pp \rightarrow pp\eta, p\Sigma K, p\Lambda K, 对 p\eta$ 的结构描述不佳, 只考虑pK 3. 五夸克重子态, Pc和Ps态的寻找^{Q.F. Lyu, D.M. Li, CPC 39(2015) 113104} 反应道 (*a*) $pp \rightarrow pp\pi^0$ • 双重子态! 氘核和d*(2380) $pp \rightarrow pp\pi^+\pi^$ $pp \to X\pi\pi$, X可以是具有两个重子数的强子态。

(c)

 $pp \to D_{30}\pi^-\pi^- \to p\pi^+p\pi^+\pi^-\pi^-$, 测量 $I = I_z = 3$ 的d*(2380) $pd \rightarrow d_{\Lambda}K$, 超核的研究 J.M.Richard, Q. Wang and Q.Zhao, PRC 91(2015)014003

(b)

需要高能质子对撞反应

1258 $pp \rightarrow pp\eta$ $pp \to pK^+\Lambda$ 1580 $pp \to pp\eta\pi^0$ 1616 1890 $pp \rightarrow pp\omega$ 2405 $pp \rightarrow pp\eta'$ $pp \rightarrow ppK^+K^-$ 24942592 $pp \rightarrow pp\phi$

阈值束 流动能(MeV)

280

600

M.G. Albrow, T.D. Coughlin, J.R. Forshaw, Prog. Part. Nucl. Phys. 65(2010)149

University of Chinese Academy of Sciences

University of Chinese Academy of Sciences

															Status	1 95 5001	n in							
Particle J^r overall $N\gamma$ $N\pi$ $\Delta\pi$ $N\sigma$ $N\eta$ AK ΣK $N\rho$ $N\omega$	Particle J^{r}	overal	$N\gamma N\pi \Delta$	$\pi \Sigma K$	Νρ Δη			Orrenall		Status	as seen in —			Overall	Jatua	as see	ш ш —						Statu	s as seen in
$N = 1/2^+ ****$	$\Delta(1232) \ 3/2^+$	****	**** ****				- D	Overall				Particle	J^P	status	$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	D	тP	Overall	_	4.77	577	
N(1440) 1/2 **** **** **** ****	$\Delta(1600) \ 3/2^+$	****	**** *** *	***		Particle	J^{r}	status	NK	$\Sigma\pi$	Other channels	$\Sigma(1193)$	$1/2^+$	****				- Particle	J^{I}	status	$\exists \pi$	ΛK	ΣK	$\Xi(1530)\pi$
N(1520) 3/2 **** **** **** **** ****	$\Delta(1620) 1/2^{-1}$	****	**** **** *	***		$\overline{\Lambda(1116)}$	$1/2^{+}$	****			$N\pi$ (weak decay)	$\Sigma(1385)$	$3^{\prime}/2^{+}$	****		****	****	$\Xi(1318)$	1/2+	****				
N(1555) 1/2 **** **** **** **** * ****	$A(1700) = 3/2^{-1}$	****	**** **** *	*** *	k	A(1380)	$1/2^{-}$	**	**	**	(0)	$\Sigma(1580)$	$3/2^{-}$	*	*	*	*	$\Xi(1530)$	3/2+	****	****			
N(1050) 1/2 **** **** **** *** * **** *	$\Delta(1750) = 0/2$				r	A(1405)	1/2					$\Sigma(1600)$	1/2-	-				$\Xi(1620)$	0/21	*	*			
N(10/5) = 5/2 **** **** **** **** * *	$\Delta(1750) = 1/2^{-1}$	*	* *	*		A(1405)	1/2	****	****	****		$\Sigma(1020)$ $\Sigma(1000)$	1/2	*	*	*	*	$\Xi(1620)$		***	4	***	**	
N(1080) 5/2 **** **** **** **** * * * N(1700) 2/2	$\Delta(1900) \ 1/2$	***	*** *** *	** :	ĸ	$\Lambda(1520)$	$3/2^{-}$	****	****	****	$\Lambda\pi\pi,\Lambda\gamma,\Sigma\pi\pi$	$\Sigma(1000)$	1/2	***	***	***	***	$\Xi(1820)$	3/2_	***	**	***	**	**
N(1700) 3/2 *** ** *** ** * *	$\Delta(1905)$ 5/2 ⁺	****	**** **** *	* * *	* **	$\Lambda(1600)$	$1/2^{+}$	****	***	****	$\Lambda\pi\pi, \Sigma(1385)\pi$	$\Sigma(1670)$	$3/2^{-}$	****	****	****	****	$\Xi(1020)$ $\Xi(1050)$	0/2-	***	**	***	ጥጥ	** *
N(1/10) 1/2 **** **** **** * *** * * * *	$\Delta(1910) \ 1/2^+$	****	*** **** *	* **	*	A(1670)	$1/2^{-}$	****	****	****	An	$\Sigma(1750)$	$1/2^{-}$	***	***	**	***	$\Xi(1950)$ $\Xi(2020)$		***	**	**	dealersh	*
$N(1(20)) = 5/2^+$ **** **** **** *** * * **** * *	$\Delta(1920) \ 3/2^+$	***	*** *** *	** **	**	A(1600)	2/2-	distant de		distant.	$4 = \Gamma(1295) =$	$\Sigma(1775)$	$5/2^{-}$	****	****	****	**	$\Xi(2030)$ $\Xi(2120)$		***		**	***	
IV(1800) 0/2 ** * ** * * N(1975) 9/9 ⁻ ··· · · · · · · · · · · · · · · · · ·	$A(1930) = 5/2^{-1}$	***	* *** *	*		A(1090)	3/2	****	****	***	$A\pi\pi, Z(1565)\pi$	$\Sigma(1780)$	$3/2^{+}$	*	*	*	*	$\Xi(2120)$ $\Xi(2250)$		*		*		
N(1010) = 3/2 *** ** ** * ** * * * * * *	$\Delta(1040) = 3/2^{-1}$	ale ale			14	$\Lambda(1710)$	$1/2^{+}$	*	*	*		$\Sigma(1880)$	$1/2^{+}$	**	**	*		$\Xi(2250)$ $\Xi(2270)$		**				
N(1000) 1/2 *** ** * ** * ** ** ** **	$\Delta(1940) \ 3/2$	**	* ** *		*	$\Lambda(1800)$	$1/2^{-}$	***	***	**	$\Lambda\pi\pi, N\overline{K}^*$	$\Sigma(1900)$	$1/2^{-}$	**	**	*	**	$\Xi(2370)$		**				
$N(1000) 2/2^+$	$\Delta(1950) \ 7/2$	****	**** **** *	k ***		A(1810)	$\frac{1}{2}$	***	**	**	$N\overline{K}^*$	$\Sigma(1910)$	$3/2^{-}$	***	*	*	**	$\pm(2500)$		*		*	*	
$N(1900) \frac{3}{2}$ **** *** * * * * * * * *	$\Delta(2000) \ 5/2^+$	**	* ** *	3	*	A(1000)	E/0+				$\nabla(1205) =$	$\Sigma(1010)$	$5/2^+$	****	***	***	***							
$N(2000) 5/2^+$ ** ** * *	$\Delta(2150) \ 1/2^{-}$	*	*			<i>A</i> (1820)	3/2	****	****	****	$\Sigma(1365)\pi$	$\Sigma(1040)$	2/2+	***	***	ጥጥጥ	***							
N(2000) 3/2 *** ** * ** *	$\Delta(2200) \ 7/2^{-}$	***	*** ** *	** **		$\Lambda(1830)$	$5/2^{-}$	****	****	****	$\Sigma(1385)\pi$	$\Sigma(1940)$	3/2	*	*		*	Ome					<u> </u>	
$N(2060) 5/2^{-}$ *** ** * * * * * *	$\Delta(2300) \ 9/2^+$	**	**			A(1890)	$3/2^{+}$	****	****	**	$\Sigma(1385)\pi, N\overline{K}^*$	$\Sigma(2010)$	3/2	*	*	*		One	-ya		る	てる	なな	
$N(2100) 1/2^+$ *** ** *** ** * *	$A(2350) = 5/2^{-1}$	*	*			4(2000)	1/2-	4	4	4	_($\Sigma(2030)$	$7/2^{+}$	****	****	****	**						_	
$N(2120) 3/2^{-}$ *** ** ** ** **	$\Delta(2000) = 0/2$		4.			1(2000)	1/2	^	Ŷ	*		$\Sigma(2070)$	$5/2^{+}$	*	*		*	Ome	vua(20	12\-	↓ ↓	, ,,	λ,	
N(2120) 0/2 **** **** **** **** * * * *	$\Delta(2390) \ 1/2$	*	*			$\Lambda(2050)$	3/2	*	*	*		$\Sigma(2080)$	$3/2^{+}$	*		*		Onic	Jga(20	12)	M	M	M	
$N(2220) 9/2^+$ **** ** **** * *	$\Delta(2400) \ 9/2$	**	** **			$\Lambda(2070)$	$3/2^{+}$	*	*	*		$\Sigma(2100)$	$7/2^{-}$	*	*	*	*				· ·			
$N(2250) 9/2^-$ **** ** **** * *	$\Delta(2420) \ 11/2^{-1}$	****	* ****			$\Lambda(2080)$	$5/2^{-}$	*	*	*		$\Sigma(2110)$	$1/2^{-}$	*	*	*	*	Ome	eda(22	50)-	5.7	፣ ና ጉ	\$7	
$N(2300) 1/2^+ ** **$	$\Delta(2750)$ 13/2 ⁻	**	**			4(2085)	$7/2^+$	**	**	*		$\Sigma(2230)$	$3/2^+$	*	*	*	*		3(~	\sim	
$N(2570) 5/2^- ** **$	$\Delta(2950)$ 15/2 ⁺	**	**			1(2000)	1/2	ተተ	ተተ	*	*	$\Sigma(2250)$	•/=	**	**	*	*							
$N(2600) 11/2^{-} *** ***$	T · ·	•				$\Lambda(2100)$	$7/2^{-}$	****	****	**	NK^{*}	$\Sigma(2455)$		4	*			Ome	ega(23	80)-	52	י <u>יל</u> ר י		
$N(2700) 13/2^+ ** **$						A(2110)	$5/2^{+}$	***	**	**	$N\overline{K}^*$	$\Sigma(2400)$ $\Sigma(2600)$		т 	т 							~		
* *** Existence is certain.						4(2225)	2/2-					$\Sigma(2020)$		*	*				(0.4)	70)		Α		
* * * Existence is very likely.						1(2020)	3/2	×	*			2 (3000)		*	*	*		Ome	ega(24	70)-	エ な	ম ।		
** Evidence of existence is fair.						A(2350)	$9/2^{+}$	***	***	*		$\Sigma(3170)$		*				_						
 Evidence of existence is poor. 						A(2585)		*	*									-						

三星以上/以下的, N*,21/7个, Δ*,12/10个, Λ*,14/9个, Σ*,9/17个, Ξ*,6/5个, Ω*,3/2个

的中国神学院大学

K介子束流物理

三星以上/以下的, N*, 21/7个, Λ*, 14/9个, Σ*, 9/17个, Ξ*, 6/5个, Ω*, 3/2个

			K^-p	\rightarrow	$F_m(s) = \frac{\lambda^2}{\lambda^4 + (s)}$	$\frac{\chi^4}{(m_R^2)^2}$
$\bar{K}(q)$	K(q')	*****			$\mathcal{L}_{KNR_{1/2}} = -g_{KNR}\bar{\Psi}_R[\chi i\Gamma\varphi_K + (1-\chi)\frac{1}{M}\Gamma\gamma_\mu(\partial^\mu\varphi_K)]\Psi_R[\chi^\mu_K] + (1-\chi)\frac{1}{M}\Gamma\gamma_\mu(\partial^\mu\varphi_K)]\Psi_K] + (1-\chi)\frac{1}{M}\Gamma\gamma_\mu(\partial^\mu\varphi_K)] + (1-\chi)\frac{1}{M}\Gamma\gamma_\mu(\partial^\mu\varphi_K)] $	Ψ_N
Λ,		+			$\mathcal{L}_{KNR_{3/2}} = \frac{g_{NRK}}{m_K} \bar{\Psi}_N \Gamma \gamma_5 \Psi_{R\mu} \partial^{\mu} K \Gamma = \gamma_5 (+) \ 1 \ (-)$	
N(p) M	$\Xi(p')$	• 	• M _u	I	$\mathcal{L}_{KN \Sigma(1670)} = \bar{\Psi}_{\Sigma}^{\alpha} \frac{g_{KNR_{3/2}}}{2} \left[\gamma_{\alpha} \left(q.p \right) - \not p q_{\alpha} \right] \left[1 + \not p / M_N \right] \Psi_N$	
共振态粒子(R)	质量 (MeV)	宽度 (MeV)	$g_{KNR} * g_{K\Xi R}$		$2m_K$	
Λ	1116	0	46.31 ^[3]	100	Δ*(1520.3/2_) =	· · · · ·]
Σ	1189	0	$47.47^{[3]}$	100	A (1520,372-)	*****
$\Lambda(1405)$	1405	50	$1.501^{[2]}$	10	Λ(1116,1/2+)	2 (1385,3/2+)
$\Lambda(1670)$	1670	35	$0.054^{[2]}$	(q 1	Δ*(1405.1/2-)	$\Sigma(1189.1/2+)$
$\Lambda(1810)$	1810	150	$7.840^{[2]}$	d(_(1107,172.7)
$\Lambda(1520)$	1520	16	$0.646^{[1]}$	0.1		
$\Sigma(1750)$	1750	90	$0.250^{[2]}$	0.01	$\Lambda^{*}(1810,1/2+)$	Σ*(1670,3/2–)
$\Sigma(1385)$	1385	36	$18.00^{[3]}$	1E-3		$\Sigma^{*}(1750 \ 1/2 -)$
$\Sigma(1670)$	1670	60	$7.840^{[2]}$		Λ (10/0,1/2-)	2 (1730,172)
[1]D.A.Sharov, V.L.K [2]R.Shyam, O.Scholt [3]B.C. Jackson, V.Ob	orotkikh and D.I en and A.W.Tho H Haberzettlau	E.Lanskoy, EPJA mas , PRC84(20	A47(2011)109 11)042201 PRC91(2015)065	1E-4 0.	D.5 1.0 1.5 2.0 2.5 3.00.5 1.0 1.5 2.0 E _K (GeV) E _K -(GeV)	2.5 3.0

University of Chinese Academy of Sciences

中国科学院大学

University of Chinese Academy of Sciences

 $\bar{K}(q)$

Λ	1116	0	46.31 ^[3]
Σ	1189	0	$47.47^{[3]}$
$\Lambda(1405)$	1405	50	$1.501^{[2]}$
$\Lambda(1670)$	1670	35	$0.054^{[2]}$
$\Lambda(1810)$	1810	150	$7.840^{[2]}$
$\Lambda(1520)$	1520	16	$0.646^{[1]}$
$\Sigma(1750)$	1750	90	$0.250^{[2]}$
$\Sigma(1385)$	1385	36	$18.00^{[3]}$
$\Sigma(1670)$	1670	60	$7.840^{[2]}$

[1]D.A.Sharov, V.L.Korotkikh and D.E.Lanskoy, EPJA47(2011)109
[2]R.Shyam, O.Scholten and A.W.Thomas , PRC84(2011)042201
[3]B.C.Jackson, Y.Oh, H.Haberzettl and K.Nakayama, PRC91(2015)065208

LANDOLT-BÖRNSTEIN Numerical Data and Functional Relationships in Science and Technology

> New Series Editor in Chief: O. Mad

中国科学院大学

University of Chinese Academy of Sciences

[2]R.Shyam, O.Scholten and A.W.Thomas, PRC84(2011)042201 [3]B.C.Jackson, Y.Oh, H.Haberzettl and K.Nakayama, PRC91(2015)065208

中微子束流物理

利用中微子束流研究强子物理。

 $\gamma p \to KY^*, \ \pi p \to KY^*, \ e^+e^- \to Y\overline{Y}^*, \ ep \to eKY^*, \ pp \to KNY^*$

问题: 多强子末态带来的困扰!

 $K^-p \to Y^*$

问题: 束流能量选择有限制!

 $\bar{\nu}p \rightarrow l^+Y^*$

中微子束流物理

中微子核反应估计核子内部的uū/dd̄/ss̄/cc̄成分(邹老师的idea) $|p\rangle = c_1|uud\rangle + c_2|uud(u\bar{u})\rangle + c_3|uud(d\bar{d})\rangle + c_4|uud(s\bar{s})\rangle + c_5|uud(c\bar{c})\rangle.$

中微子束流物理

中微子核反应估计核子内部的uū/dd̄/ss̄/cc̄成分(邹老师的idea) $|p\rangle = c_1|uud\rangle + c_2|uud(u\overline{u})\rangle + c_3|uud(d\overline{d})\rangle + c_4|uud(s\overline{s})\rangle + c_5|uud(c\overline{c})\rangle.$

Eight important processes :

 W^+ :

3

4

$(d\overline{d})uu$	$d \rightarrow d\overline{c}uud$	W^- :	5	uud	$\rightarrow uuu$
$(s\overline{s})uu$	$d \rightarrow s\overline{c}uud$		6	uud	$\rightarrow uuc$
uud	\rightarrow dud		7	$(u\overline{u})uuu$	$d \rightarrow u\overline{s}uud$
uud	\rightarrow sud		8	$(s\overline{s})uuc$	$l \rightarrow c\overline{s}uud$

≫ ③, ④, ⑤ has been studied by Wu and Zou. $\bar{v}_l/v_l + p \rightarrow l^{\pm} + n/\Lambda/\Sigma_0/\Delta^{++}$

» Adopting the **6** process to estimate the cross-section of Σ_c^{++} production ?

≫ The processes 1 and 7 can be used to study the components of $u\bar{u}$ and $d\bar{d}$ that undergo continuous generation and annihilation within protons. That aims to test the asymmetry between \bar{d} and \bar{u} , with $P_{\bar{d}-\bar{u}} \simeq (11.8 \pm 1.2)$ %.

>> The processes 2 and 8 can be used to study the components of $s\bar{s}$ within protons.

W^+ :	~	W^- :	
$c \rightarrow d$	$1 \ \overline{d} \to \overline{c}$	$5 d \to u$	$\overline{u} \to \overline{d}$
$c \rightarrow s$	$2 \ \overline{s} \to \overline{c}$	$\begin{array}{c} 6 d \rightarrow c \end{array}$	$\overline{c} \to \overline{d}$
$3 u \to d$	$\overline{d} \to \overline{u}$	$s \rightarrow u$	$\overline{u} \to \overline{s}$ (7)
$4 u \to s$	$\overline{s} \to \overline{u}$	$8 s \rightarrow c$	$\overline{c} \rightarrow \overline{s}$

理论计算正在进行,HIAF 是否可以进行模拟,需要高 能的中微子

小结和展望

- 理解QCD的非微扰和色禁闭现阶段只能从现象总结规律,试图深入理解QCD理论。需要大量精确的实验。
- 高亮度质子束流和K介子束流等强子束流,以及中微
 子束流可以实现强子反应的高精度测量,发现确认
 众多的强子共振态!
- 期待HIAF上丰富的强子物理实验。

Σπζ