

2025年4月19日至23日 中科院近代物理所惠州研究部

Physics of $\eta^{(\prime)}$ rare decays

Feng-Kun Guo

Institute of Theoretical Physics, CAS

Based on the excellent review article (materials taken from this paper unless otherwise mentioned, check it for original references):

L. Gan, B. Kubis, E. Passemar, and S. Tulin, *Precision tests of fundamental physics with* η *and* η' *mesons*, Phys.Rept. 945 (2022) 1 [arXiv:2007.00664]

+

FKG, B. Kubis, A. Wirzba, *Anomalous decays of* η *and* η *into four pions*, Phys.Rev. D 85 (2012) 014014; A. Guevara, FKG, H.-J. Jing, Novel method for determining the light quark mass ratio using $\eta' \rightarrow \eta \pi \pi$ decays, arXiv:2502.02837

η, η'

- Symmetries of QCD:
 - Gauge, Lorentz, C
 - > P, CP if there is no θ term
 - Chiral symmetry:

$$\begin{split} U(N)_L \times U(N)_R &= SU(N)_L \times SU(N)_R \times U(1)_V \times U(1)_A \\ &\to SU(N)_V \times U(1)_V \end{split}$$

Spontaneous symmetry breaking, chiral anomaly

• Goldstone bosons of $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$

 $\succ \pi^0, \pi^\pm, K^\pm, K^0, \overline{K}^0, \eta$

- $> \eta'$ is not a Goldstone boson because of the $U(1)_A$ anomaly
- > U(1) anomaly suppressed in the large N_c limit, 9 Goldstone bosons
- Theory frameworks well defined:
 - > (Large N_c) chiral perturbation theory (ChPT)
 - > Dispersion relations: $\pi\pi$ scattering phase shifts well-known
 - Sometimes with vector-meson dominance model

η, η'

- Quantum numbers: $I^G I^{PC} = 0^+ 0^{-+}$
- C, P, CP eigenstates: can be used to test C and CP invariance, search for class-II interaction

Class	Violated	Conserved	Interaction
0		C, P, T, CP, CT, PT, CPT	strong, electromagnetic
Ι	C, P, CT, PT	T, CP, CPT	(weak, with no KM phase or flavor-mixing)
II	P, T, CP, CT	C, PT, CPT	
III	C, T, PT, CP	P, CT, CPT	
IV	C, P, T, CP, CT, PT	CPT	weak

- For η , $M_{\eta} = 547.862 \pm 0.017$ MeV, all its strong decays are forbidden at the lowest order by angular momentum conservation, C, P and CP invariance, and G-parity (isospin) conservation: tiny width $\Gamma_{\eta} = 1.31 \pm 0.05 \text{ keV}$
- For η' , $M_{\eta'} = 957.78 \pm 0.06$ MeV, has isospin-conserving decays into $\eta \pi \pi$, $\Gamma_{\eta'} = 196 \pm$ 9 keV
- All additive quantum numbers are zero: flavor-conserving lab for new-physics search, little SM background 3

Physics of η, η'

- Precision tests of the Standard Model
 - CHPT, chiral anomaly
 - > Fundamental parameters: quark mass ratio related to $m_d m_u$
 - > Contribution of η , η' to the hadronic light-by-light contribution to the muon g-2
 - > Dynamics in the scalar sector: $f_0(500)$, $a_0(980)$
- Beyond the Standard Model
 - New source of C/CP violation
 - Search for new light particles
 - dark photon, protophobic X boson, leptophobic $U(1)_B$ B boson
 - light Higgs-like scalars
 - axion-like particles (ALPs)
 - > Weak decays BSM
 - > Input for precision calculation of the QCD axion $a \rightarrow \gamma \gamma$

Physics of η decays

Channel	Expt. branching ratio	Discussion	Sect.
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η – η' mixing	6.1
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$	5.1
$\eta ightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars	7, <u>10.1</u> , 10.2
$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)	10.3
$\eta \rightarrow 4\gamma$	$<2.8\times10^{-4}$	< 10 ⁻¹¹ [52]	
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, <i>C</i> / <i>CP</i> violation, light Higgs scalars	5.1, 9.2, 10.2
$\eta ightarrow \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation	6.3, 9.1
$\eta ightarrow \pi^+\pi^-\gamma\gamma$	$<2.1\times10^{-3}$	χ PT, ALPs	10.3
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic <i>X</i> boson	6.4, 10.1
$\eta ightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	6.4, 10.1
$\eta \to e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	6.9, 8
$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, <i>P/CP</i> violation	6.9, 8, 9.1
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	9.2, 10.3
$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs	6.6, 9.1, 10.3
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs	6.6, 9.1, 10.3
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$	6.7
$\eta \to e^+ e^- \mu^+ \mu^-$	$<1.6\times10^{-4}$	theory input for $(g-2)_{\mu}$	6.7
$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	6.7
$\eta \to \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only	6.8
$\eta \to \pi^\pm e^\mp v_e$	$<1.7\times10^{-4}$	second-class current	8
$\eta \to \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [53]	<i>P</i> / <i>CP</i> violation	9.1
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	<i>P</i> / <i>CP</i> violation	9.1
$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P</i> / <i>CP</i> violation	6.5, 9.1

L. Gan, B. Kubis, E. Passemar, S. Tulin,

arXiv:2007.00664

5

Physics of η' decays

Channel	Expt. branching ratio	Discussion	Sect.
$\eta' o \eta \pi^+ \pi^-$	42.6(7)%	large- $N_c \chi$ PT, light Higgs scalars	5.2, 10.2
$\eta' ightarrow \pi^+ \pi^- \gamma$	28.9(5)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation	6.3, 9.1
$\eta' ightarrow \eta \pi^0 \pi^0$	22.8(8)%	large- $N_c \chi PT$	5.2
$\eta' ightarrow \omega \gamma$	2.489(76)% [55]	theory input for singly-virtual TFF and $(g - 2)_{\mu}$	6.8
$\eta' \to \omega e^+ e^-$	$2.0(4) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$	6.8
$\eta' \to 2\gamma$	2.331(37)% [55]	chiral anomaly, $\eta - \eta'$ mixing	6.1
$\eta' \to 3\pi^0$	2.54(18)% (*)	$m_u - m_d$	5.3
$\eta' ightarrow \mu^+ \mu^- \gamma$	$1.09(27) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	6.4, 10.1
$\eta' ightarrow e^+ e^- \gamma$	$4.73(30) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	6.4, 10.1
$\eta' \to \pi^+ \pi^- \mu^+ \mu^-$	$<2.9\times10^{-5}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P</i> / <i>CP</i> violation, dark photon, ALPs	6.6, 9.1, 10.1, 10.3
$\eta' \to \pi^+\pi^- e^+ e^-$	$2.4(^{+1.3}_{-1.0}) \times 10^{-3}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P</i> / <i>CP</i> violation, dark photon, ALPs	6.6, 9.1, 10.1, 10.3
$\eta' \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	9.2, 10.3
$\eta' \to \pi^+ \pi^- \pi^0$	$3.61(17) \times 10^{-3}$	$m_u - m_d$, <i>C/CP</i> violation, light Higgs scalars	5.3, 9.2, 10.2
$\eta' \to 2(\pi^+\pi^-)$	$8.4(9) \times 10^{-5}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$	6.5
$\eta' \to \pi^+\pi^-2\pi^0$	$1.8(4) \times 10^{-4}$		6.5
$\eta' \to 2(\pi^+\pi^-)\pi^0$	$<1.8\times10^{-3}$	ALPs	10.3
$\eta' \to K^{\pm} \pi^{\mp}$	$< 4 \times 10^{-5}$	weak interactions	8
$\eta' \to \pi^\pm e^\mp \nu_e$	$<2.1\times10^{-4}$	second-class current	8
$\eta' ightarrow \pi^0 \gamma \gamma$	$3.20(24) \times 10^{-3}$	vector and scalar dynamics, <i>B</i> boson, light Higgs scalars	7.4, 10.1, 10.2
$\eta' ightarrow \eta \gamma \gamma$	$8.3(3.5) \times 10^{-5}$ [56]	vector and scalar dynamics, <i>B</i> boson, light Higgs scalars	7.4, 10.1, 10.2
$\eta' \to 4\pi^0$	$< 4.94 \times 10^{-5}$ [57]	(S-wave) P/CP violation	6.5
$\eta' \to e^+ e^-$	$< 5.6 \times 10^{-9}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	6.9, 8
$\eta' ightarrow \mu^+ \mu^-$		theory input for $(g - 2)_{\mu}$, BSM weak decays	6.9, 8
$\eta' \to \ell^+ \ell^- \ell^+ \ell^-$		theory input for $(g-2)_{\mu}$	6.7
$\eta' ightarrow \pi^+ \pi^- \pi^0 \gamma$		B boson	10.1
$\eta' ightarrow \pi^+ \pi^-$	$<1.8\times10^{-5}$	<i>P</i> / <i>CP</i> violation	9.1
$\eta' \rightarrow 2\pi^0$	$< 4 \times 10^{-4}$	<i>P/CP</i> violation	9.1

L. Gan, B. Kubis, E. Passemar, S. Tulin,

arXiv:2007.00664

η,η' decays

- $\eta \rightarrow 3\pi$:
 - > Isospin breaking, $\propto (m_d m_u)$, em correction negligible
 - ▶ quark mass ratios, together with lattice results of m_s/m_{ud} ; $m_u \neq 0$
 - > C violation from the $\pi^+\pi^-$ asymmetry in the Dalitz distribution
 - > $\pi^+\pi^-$ threshold cusps in $\eta \to 3\pi^0$ and $\eta' \to \eta\pi^0\pi^0$, probe the $\pi\pi$ scattering length, but the current data cannot compete with the $K^+ \to \pi^+\pi^0\pi^0$ decay (NA48/2: 6.031×10⁷)

Two-photon decays

- \blacktriangleright Discrepancy between measurements from e^+e^- and Primakoff measurements
- Together with the branching fraction, affect the values of partial decay widths of the other channels
- ▶ Measuring the $\eta \eta'$ mixing
- → Determination of $O(p^6)$ anomalous LECs C_7^W and C_8^W , input of precision calculation of QCD axion decay $a \rightarrow \gamma \gamma$

$$g_{a\gamma\gamma} = \frac{\alpha_{\rm em}}{2\pi f_a} \left(\frac{\mathcal{E}}{\mathcal{C}} \underbrace{-2.05(3)}_{\text{Z-Y. Lu, M.-L. Du, FKG, U.-G. Meißner, T. Vonk, JHEP05(2020)001}}_{\text{Z.-Y. Lu, M.-L. Du, FKG, U.-G. Meißner, T. Vonk, JHEP05(2020)001}} \underbrace{-1.92(4)}_{\text{G.G. di Cortona et al., JHEP01(2016)034}} \left| \mathcal{C}_7^W \right| \gg |\mathcal{C}_8^W| \right|$$

Transition form factors (TFFs)

- TFF: $F_{\eta\gamma\gamma}(Q_1^2, Q_2^2), F_{\eta\gamma\gamma} = F_{\eta\gamma\gamma}(0, 0)$
- Input to the dispersive analysis of the hadronic light-by-light contribution to

• Singly or doubly-virtual TFFs can be measured with Primakoff effect and $\eta^{(\prime)} \rightarrow l^+ l^- \gamma, \pi^+ \pi^- \gamma, l^+ l^- l^+ l^-, \pi^+ \pi^- l^+ l^-$

Transition form factors

• Theory predictions of π^0 , $\eta^{(\prime)} \rightarrow l^+ l^- l^+ l^-$, accessible at the HIAF eta factory (most of them only have upper bounds to date)

$\pi^0 \to 2(e^+e^-)$	_		
3.47×10^{-5} [449]	_		
$3.36689(5) \times 10^{-5}$ [450]			
$3.40(1) \times 10^{-5}$ [452]			
3.3919(13) × 10 ⁻⁵ [447]	_		
$\eta \rightarrow 2(e^+e^-)$	$\eta' \to 2(e^+e^-)$	4	
$2.71(2) \times 10^{-5}$ [450]	$2.10(45) \times 10^{-6}$ [450]	实验↩	η 个数↩
$2.701(14) \times 10^{-5}$ [447]		KLOE←	10^8←
		KLOE – II←	3 x 10^8⊲
		COSY←	5 x 10 [^] 8⇔
$\eta \to e^+ e^- \mu^+ \mu^-$	$\eta' \to e^+ e^- \mu^+ \mu^-$	MAMI←	2.5 x 10 [^] 8⇔
$2.39(7) \times 10^{-6}$ [450]	$6.39(91) \times 10^{-7}$ [450]	JLab 12↩	~10^9⇔
$2.335(12) \times 10^{-6}$ [447]		BESIII←	10^6⊲
$\eta \to 2(\mu^+\mu^-)$	$\eta' \to 2(\mu^+\mu^-)$	REDTOP←	2 x10^12↩
$3.98(15) \times 10^{-9}$ [450]	$1.69(36) \times 10^{-8}$ [450]	REDTOP II←	~ 10^13↩
$3.878(20) \times 10^{-9}$ [447]		HIAF←	10 ¹²

备注↩

 \leftarrow

 \leftarrow

 \leftarrow

 \leftarrow

 \subset

arXiv:1709.04627€

一年↩

一年↩

一年↩

η'个数↩

0.5 x 10[^]6←

1.5 x 10[^]6←

No←

6 x 10⁶€

~10^9⇔

 \subset

?↩⊐

 \leftarrow

Transition form factors

• $\pi^0, \eta^{(\prime)} \rightarrow l^+ l^-$

Probe weak decays beyond the SM (Z contributes at permille level, precision measurements)

 π^0, η, η' ----

• Current experimental results on the branching fractions

$\pi^0 ightarrow e^+ e^-$	$\eta ightarrow e^+ e^-$	$\eta ightarrow \mu^+ \mu^-$	$\eta' ightarrow e^+ e^-$	$\eta' \to \mu^+ \mu^-$
$7.48(38) \times 10^{-8}$ [460]	$\leq 7 \times 10^{-7}$ [461]	$5.8(8) \times 10^{-6}$ [54]	$\leq 5.6 \times 10^{-9}$ [462, 463]	

• Theory predictions, accessible at eta factory

$\pi^0 ightarrow e^+ e^-$	$\eta ightarrow e^+e^-$	$\eta' ightarrow e^+ e^-$
$6.23(5) \times 10^{-8}$ [483]	$5.31(^{+0.14}_{-0.04}) \times 10^{-9}$ [472]	$1.81(18) \times 10^{-10}$ [472]
$6.22(3) \times 10^{-8}$ [452]		
	$\eta ightarrow \mu^+ \mu^-$	$\eta' ightarrow \mu^+ \mu^-$
	$4.71(^{+0.05}_{-0.21}) \times 10^{-6}$ [472]	$1.36(^{+0.29}_{-0.26}) \times 10^{-7}$ [472]

$\eta^{(\prime)} ightarrow 4\pi$

FKG, B. Kubis, A. Wirzba, PRD85(2012)014014

- $\eta' \to \pi^+ \pi^- \pi^+ \pi^-, \pi^+ \pi^- \pi^0 \pi^0$:
 - $\succ O(p^6)$ (NNLO) in CHPT
 - Kaon loop + VMD for O(p⁶) counterterm lead to predictions

$$\mathcal{B}(\eta' \to 2(\pi^+ \pi^-)) = (1.0 \pm 0.3) \times 10^{-4},$$

$$\mathcal{B}(\eta' \to \pi^+ \pi^- 2\pi^0) = (2.4 \pm 0.7) \times 10^{-4}.$$

BESIII measurements verified the predictions

BESIII, PRL112(2014)251801

$$\mathcal{B}(\eta' \to 2(\pi^+\pi^-)) = 8.4(9)(3) \times 10^{-5}, \qquad \mathcal{B}(\eta' \to \pi^+\pi^-2\pi^0) = 1.8(4)(1) \times 10^{-4}$$

- $\eta' \rightarrow 4\pi^0$:
 - > $O(p^{10})$ in CHPT, *D*-wave between pions
 - $\mathcal{B}(\eta' \to 4\pi^0) \sim 4 \times 10^{-8}$
- $\eta \rightarrow 4\pi^0$:
 - ➢ S-wave CP forbidden
 - > Tiny phase space for *D*-wave leads to $\mathcal{B}(\eta \rightarrow 4\pi^0) \sim 3 \times 10^{-30}$
 - If found, signal for CP violation

C-violating processes

- C-violating processes:
 - strictly violating
 - violating via single-photon exchange

Channel	Branching ratio	Note	Ref.
$\eta \rightarrow 3\gamma$	$< 1.6 \times 10^{-5}$	sensitive to C,CP-violating as well as C,P-violating but CP-conserving BSM (safe from EDM constraints)	[598]
$\eta ightarrow \pi^0 \gamma$	$< 9 \times 10^{-5}$	Violates angular momentum conservation or gauge invariance	[599]
$\eta \to \pi^0 e^+ e^-$	$<7.5\times10^{-6}$	C, CP-violating as single- γ process	[508]
$\eta ightarrow \pi^0 \mu^+ \mu^-$	$< 5 \times 10^{-6}$	C, CP-violating as single- γ process	[600]
$\eta ightarrow 2\pi^0 \gamma$	$< 5 \times 10^{-4}$		[601]
$\eta \to 3\pi^0 \gamma$	$< 6 \times 10^{-5}$		[601]
$\eta' \to 3\gamma$	$< 1.0 \times 10^{-4}$		[515]
$\eta' \to \pi^0 e^+ e^-$	$<1.4\times10^{-3}$	C, CP-violating as single- γ process	[602]
$\eta' ightarrow \pi^0 \mu^+ \mu^-$	$< 6.0 \times 10^{-5}$	C, CP-violating as single- γ process	[600]
$\eta' \to \eta e^+ e^-$	$<2.4\times10^{-3}$	C, CP-violating as single- γ process	[602]
$\eta' ightarrow \eta \mu^+ \mu^-$	$<1.5\times10^{-5}$	C, CP-violating as single- γ process	[600]

SM predictions: $\mathcal{B}(\eta \to 3\gamma) \sim 10^{-25} - 10^{-17}$, $\mathcal{B}(\eta' \to 3\gamma) \sim 10^{-23} - 10^{-15}$ Three or more orders of magnitude below the current sensitivity for $\eta \to \pi^0 l^+ l^-$ > Charge asymmetry of π^{\pm} distributions in $\eta \to \pi^+ \pi^- \pi^0$

Search for new vector bosons BSM

• Dark photon: the region preferred for explaining $(g-2)_{\mu}$ within 2σ is excluded

POT: protons on target

 Protophobic vector boson (X): candidate to explain the 16.7 MeV anomaly in ⁸Be^{*} → ⁸Be e⁺e⁻

$${}^{8}\mathrm{Be}^{*} \rightarrow {}^{8}\mathrm{Be} \ X \rightarrow {}^{8}\mathrm{Be} \ e^{+}e^{-}$$

allowed ranges from $\pi^0 \to X\gamma \to e^+e^-\gamma$ $\varepsilon_{p,n}$: the X changes of p, n in units of eThe same channel also probes the T'

The same channel also probes the Z' boson from U(1)_{B-L}

Search for new vector bosons BSM

15

• Leptophobic $U(1)_B$ boson: gauge boson if the $U(1)_B$ is a gauge symmetry

$$\mathcal{L}_{\rm int} = \left(\frac{1}{3}g_B + \varepsilon e Q_q\right) \bar{q} \gamma^{\mu} q B_{\mu} - \varepsilon e \bar{\ell} \gamma^{\mu} \ell B_{\mu}$$

> Branching fractions

> Exclusion regions

Channels

 $\eta \to B\gamma \to \pi^0 \gamma\gamma, \quad \eta' \to B\gamma \to \pi^0 \gamma\gamma, \quad \eta' \to B\gamma \to \pi^+ \pi^- \pi^0 \gamma, \quad \eta' \to B\gamma \to \eta\gamma\gamma.$

Search for ALPs

- Axion-like particles (ALPs): mediating interactions between dark matter and SM
- Branching ratios of decay modes involving an ALP, assuming $f_a = 10$ GeV and no direct \bullet quark-ALP coupling ($c_a = 0$; through gluons)

$$\mathcal{L}_{ALP} = \mathcal{L}_{QCD} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{1}{2} m_{0}^{2} a^{2} - \frac{\alpha_{s}}{8\pi f_{a}} a G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} - \frac{\alpha_{em} c_{\gamma}}{8\pi f_{a}} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{\partial^{\mu} a}{2f_{a}} \bar{q} c_{q} \gamma_{\mu} \gamma_{5} q - \frac{\partial^{\mu} a}{2f_{a}} \bar{\ell} c_{\ell} \gamma_{\mu} \gamma_{5} \ell$$

$$\int_{0}^{10^{-4}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-4}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{0} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{+} \pi^{-} a}{\eta \to 2\pi^{-} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{-} a}{\eta \to \pi^{-} a} \int_{0}^{10^{-6}} \frac{\eta \to \pi^{-} a}{\eta \to \pi^{-}$$

>
$$\eta, \eta' \to 2\pi a \to 2\pi\gamma\gamma$$

> $\eta, \eta' \to \pi^+\pi^- a \to \pi^+\pi^- l^+ l^-; \eta, \eta' \to \pi^0\pi^0 a \to \pi^0\pi^0 l^+ l^-$
> More η' decay chappels

wore I decay channels

Search for new scalars

- New scalar bosons BSM
 - Low-mass scalars (below about 10 MeV) excluded:
 - Big bang nucleosynthesis arguments for $S \rightarrow \gamma \gamma$ exclude $m_S < 20 \text{ MeV}$
 - Beam dump experiments and $(g-2)_{\mu}$ exclude $m_{S} \lesssim 10 \text{ MeV}$
 - > Intermediate mass region (10 MeV $\lesssim m_S < 2 M_\pi$), can be searched for in

 $\eta \rightarrow \pi^0 S \rightarrow \pi^0 \gamma \gamma, \pi^0 e^+ e^-, \pi^0 \mu^+ \mu^-$

- ➢ High mass (m_S > 2M_π), can be searched for in $\eta, \eta' → \pi^0 S → 3\pi, \quad \eta' → \eta S → \eta \pi \pi$
- Allowed parameter space needs to be worked out

Extraction of Q value from $\eta' \rightarrow \eta \pi \pi$

• Q: fundamental parameter, isospin breaking quark mass ratio ($\hat{m} = \frac{m_u + m_d}{2}$) $Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$ Leutwyler's ellipse: $\left(\frac{m_u}{m_d}\right)^2 + \frac{1}{Q^2} \left(\frac{m_s}{m_d}\right)^2 = 1$ H. Leutwyler (1996)

- Extracted from isospin breaking quantities
 - Using Dashen's theorem: $(\Delta M_K^2)_{\rm EM} = (\Delta M_\pi^2)_{\rm EM} + \mathcal{O}(e^2 m_q)$; rel. corrections $\mathcal{O}(m_a^2, \delta, e^2)$

$$Q_D^2 = \frac{\left(M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2 + M_{\pi^0}^2\right) \left(M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2 - M_{\pi^0}^2\right)}{4M_{\pi^0}^2 \left(M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2 - M_{\pi^0}^2\right)} = (24.3)^2$$

• $\eta \to \pi^+ \pi^- \pi^0$, $3\pi^0$:

Q	Refs.
24.3	from Dashen's theorem [44]
22.7 ± 0.8	A. V. Anisovich & H. Leutwyler [17]
23.1 ± 0.7	K. Kampf $et al.$ [38]
22.1 ± 0.7	G. Colangelo $et al.$ [41]
21.50 ± 0.97	M. Albaladejo & B. Moussallam [42]
22.4 ± 0.3	D. Stamen <i>et al.</i> $[45]$
23.3 ± 0.5	FLAG $(N_f = 2 + 1)$ [43]
22.5 ± 0.5	FLAG $(N_f = 2 + 1 + 1)$ [43]

Extraction of Q value from $\eta' \rightarrow \eta \pi \pi$

A. Guevara, FKG, H.-J. Jing, arXiv:2502.02837

- $\eta' \rightarrow \eta \pi^+ \pi^-$ and $\eta' \rightarrow \eta \pi^0 \pi^0$ are isospin conserving reactions
 - But their difference is isospin breaking, can we extract Q from η' decays?
- Unit disk mapping: Dalitz plot → unit disk
 - Dalitz plot regions of $\eta' \to \eta \pi^+ \pi^-$ and $\eta' \to \eta \pi^0 \pi^0$ map to the same unit disk
 - Take difference inside the unit disk \Rightarrow purely isospin breaking !
 - Practical procedure:
 - Measure Dalitz plot distribution parameters
 - Discretize unit disk into bins
 - Map Dalitz dists. to unit disk and take difference
 - Parametrize decay amplitudes using UChPT or dispersion relation
 - Fit to the difference inside the unit disk

$$d\Gamma_{\rm diff}(r,\theta) \equiv \frac{d^2}{dm_{12}^2 dm_{23}^2} \left[\Gamma_{\pi^0}(r,\theta) - \Gamma_{\pi^{\pm}}(r,\theta)\right]$$
$$d\Gamma_{\rm diff}(r,\theta) = 2\operatorname{Re}\left(\mathcal{M}_{\rm IC}^*\mathcal{M}_{\rm IB}\right) + \mathcal{O}\left(Q^{-8}\right) \propto \frac{1}{Q^4}$$

• Exact the *Q* value

Extraction of Q value from $\eta' \rightarrow \eta \pi \pi$

Unit disk degenerated from BESIII measurement of $\eta' \rightarrow \eta \pi^+ \pi^-$ (3.5×10⁵ events)

BESIII, PRD 97 (2018) 012003

Take UChPT amplitude from

R. Escribano et al., JHEP 05 (2011) 094

Possible improvements:

- Include higher order terms in Dalitz plot distribution
- Use dispersive amplitudes

A. Guevara, FKG, H.-J. Jing, arXiv:2502.02837

Unit disk difference from isospin breaking

Q	Refs.
24.3	from Dashen's theorem [44]
22.7 ± 0.8	A. V. Anisovich & H. Leutwyler [17]
23.1 ± 0.7	K. Kampf <i>et al.</i> [38]
22.1 ± 0.7	G. Colangelo et al. [41]
21.50 ± 0.97	M. Albaladejo & B. Moussallam [42]
22.4 ± 0.3	D. Stamen et al. [45]
23.3 ± 0.5	FLAG $(N_f = 2 + 1)$ [43]
22.5 ± 0.5	FLAG $(N_f = 2 + 1 + 1)$ [43]
22.2 ± 1.1	this work

20

Summary

- Rich physics (both precision tests of SM and BSM) can be done at eta factories
- Most interesting processes suggested in <u>L. Gan et al., arXiv:2007.00664</u>

Decay channel	Standard Model	Discrete symmetries	Light BSM particles
$\eta ightarrow \pi^+ \pi^- \pi^0$	light quark masses	<i>C</i> / <i>CP</i> violation	scalar bosons (also η')
$\eta^{(\prime)} o \gamma \gamma$	η – η' mixing, precision partial widths		
$\eta^{(\prime)} ightarrow \ell^+ \ell^- \gamma$	$(g - 2)_{\mu}$		Z' bosons, dark photon
$\eta ightarrow \pi^0 \gamma \gamma$	higher-order χ PT, scalar dynamics		$U(1)_B$ boson, scalar bosons
$\eta^{(\prime)} ightarrow \mu^+ \mu^-$	$(g-2)_{\mu}$, precision tests	CP violation	
$\eta \to \pi^0 \ell^+ \ell^-$		<i>C</i> violation	scalar bosons
$\eta^{(\prime)} \to \pi^+\pi^-\ell^+\ell^-$	$(g - 2)_{\mu}$		ALPs, dark photon
$\eta^{(\prime)} \to \pi^0 \pi^0 \ell^+ \ell^-$		C violation	ALPs

• $\eta' \rightarrow \eta \pi \pi$ can also be used to extract the Q value using the unit disk mapping method

Thank you for your attention!