第一届HIAF高能终端谱仪合作组会议, 2024年11月16日至18日, 广东省惠州市

Based on [2407.00874]

王 荣 代表η介子稀有衰变模拟小组 中国科学院近代物理研究所

•研究动机

• 快模拟介绍

• 暗光子衰变道的结果

• 暗希格斯粒子衰变道的结果

研究动机

• 宇宙和天文观测

暗物质暗能量由什么构成、 有什么性质?

可见宇宙为啥正物质绝对主导? CP破坏机制

如果是轻暗物质粒子,在大爆炸时产生数量过多?

 $DM + DM \rightarrow SM$ annihilation processes

新的未知的标准模型的中性传播子可以加速该湮灭过程。

研究动机

• 粒子物理

电弱能标等级问题, $m_H/m_{Plank} = 10^{-17}$, 很不自然。 超对称? 新的调整机制? 例如: $(H^{\dagger}H) \times m_H^2 \longrightarrow (H^{\dagger}H) \times (m_H^2 + c_1S + c_2S^2 + ...)$

强作用CP问题,
$$heta_{QCD}G^a_{\mu\nu}\tilde{G}^a_{\mu\nu} \longrightarrow \left(heta_{QCD} + \frac{a}{f_a}\right)G^a_{\mu\nu}\tilde{G}^a_{\mu\nu}$$
 轴子/类轴子,保持CP对称性

针对B-L或暗物质的新的规范群?

 $[SU(3) \times SU(2) \times U(1)]_{\rm SM} \longrightarrow {\rm GUT gauge group}$ $\longrightarrow [SU(3) \times SU(2) \times U(1)]_{\rm SM} \times U(1)_X \times \dots,$

中微子质量产生机制?

$$m_{\nu,\mathrm{D}}\bar{\nu}\nu \longrightarrow y_{\nu}\bar{N}\nu H + (\mathrm{h.c.}),$$

 $m_{\nu,\mathrm{M}}\bar{\nu}\nu \longrightarrow (y_{\nu})^{2}(\nu H)^{c} \times \frac{1}{m_{N}} \times (\nu H) + (\mathrm{h.c.})$

研究动机

• 微弱耦合的桥梁粒子(feebly interacting portal particle)能很好地解决前面提 到的有趣的理论问题。 [Ann.Rev.Nucl.Part.Sci. 71 (2021) 279-313]

暗区(dark sector):不带电磁、弱、强相互作用的荷的隐藏的粒子。暗区与标准模型可以通过桥梁粒子连接。桥梁粒子可以通过相互作用的拉格朗日量来体现。

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \mathcal{L}_{\text{portal}}; \ \mathcal{L}_{\text{portal}} = \sum O_{\text{SM}} \times O_{\text{DS}}$$

Portal	Coupling
Vector: dark photon (<i>A</i> ')	$-rac{arepsilon}{2\cos heta_W}F'_{\mu u}B^{\mu u}$
Scalar: dark Higgs (S)	$(\mu S + \lambda_{\rm HS} S^2) H^{\dagger} H$
Fermion: heavy neutral lepton (N)	$y_N LHN$
Pseudo-scalar: axion (<i>a</i>)	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^{5}\psi$

研究动机

• 探测微弱耦合的桥梁粒子的实验方案

[Ann.Rev.Nucl.Part.Sci. 71 (2021) 279-313]

Portal	Parameter space	Signature
Dark photon (A')	$y = \alpha_D \varepsilon^2 \alpha (m_\chi / m_{A'})^4$ versus m_χ	DM scattering, $A' \rightarrow$ invisible
	Q_{χ}/e	$A' \rightarrow$ millicharged fermions
	ε versus $m_{A'}$	$A' \rightarrow \text{visible modes}$
Dark scalar (<i>S</i>)	$\sin \theta$ versus m_S	$S \rightarrow \text{visible/invisible modes}$
Dark pseudoscalar (<i>a</i>)	Photons: $g_{a\gamma\gamma}$ versus m_a	$a \rightarrow$ visible/invisible modes
	Fermions: $g_Y = 2v/f_a$ versus m_a	$a \rightarrow$ visible/invisible modes
	Gluons: $g_G = 1/f_G$ versus m_a	$a \rightarrow \text{visible}$
Heavy neutral lepton (N)	U_e^2, U_μ^2, U_τ^2 versus m_N	$N \rightarrow$ visible/invisible modes

强流加速器实验主要通过产生新粒子的方式来研究。 探测暗物质桥梁粒子分为不可见衰变模式和可见衰变模式。

研究动机

不可见衰变模式
 例如:

 $e^{-}Z \rightarrow e^{-}ZA'$ $e^{+}e^{-} \rightarrow A'\gamma$ $K \rightarrow \pi X$

NA64、NA62、Belle2、BESIII······

• 超级η介子工厂属于可见衰变模式的实验方案

Physics goals		Decay channel
New physics	Dark photon & X17	$e^+e^-\gamma$
	Dark higgs	$ \begin{array}{c} \pi^{+}\pi^{-}\pi^{0} \\ \pi^{0}e^{+}e^{-} \end{array} $
	Axion-like particle	$\pi^{+}\pi^{-}e^{+}e^{-}$ $\pi^{+}\pi^{-}\gamma\gamma$
	CP violation	$\pi^+\pi^-\pi^0$ $\pi^+\pi^-e^+e^-$
	Lepton flavor violation	$\gamma \mu^+ e^-$ / c.c. $\mu^+ e^-$ / c.c.

快模拟介绍

 未来惠州两大强流质子装置 HIAF (p到U, <10¹³ ppp, 3 Hz) CiADS (连续束流, 2.5MW, 3.12 × 10¹⁶)

pps,有升级到2 GeV的可能性)

固定靶亮度: **φ * L * ρ * N_A/M**

1 cm Li, 4.6×10^{35} cm⁻² s⁻¹

p-pη产生截面~100 ub @ 1.8 GeV

考虑一个非常保守的运行一个月的前期实验 (慢引出): **5.9 × 10¹¹**的η产量。

p-A过程的η事例率比较高! 可以用来寻找暗物质桥梁粒子的 稀有衰变过程。

• 硅像素位置分辨σ = 50 um

- •时间、能量双读出技术(未来的目标: 时间分辨好于5 ns,能量测量噪声为 0.2MIP)
- 未来的单像素死时间小于10 us

当前模拟的事例率是比较保守的估计。

快模拟介绍

铅玻璃量能器压低中子本底,同时具有快速时间响应。 模拟能量分辨设置 $\frac{\delta E}{E} = \sqrt{0.0279^2 + 0.0557^2/E}$ 基于geant4模拟,角度分辨设置为1.2 deg.

快模拟关键代码: Yu-Tie LIANG, Xiong-Hong HE Geat4模拟: Ye TIAN

快模拟介绍

π⁰粒子的本底以及质量分辨本 领如右图所示。

误鉴别的中子导致的本底几乎 可以忽略。因为中子在铅玻璃 中的奇伦科夫光子很少,并且 大多数中子本底是低能的。

暗光子衰变道的结果

暗光子衰变道的结果

暗光子可见衰变道的 探测效率如右图所示

暗光子衰变道的结果

低能ŋ介子的衰变末态主要在中央快度区域,并且动量(和横动量)较低。

一个月且保守取数事例率下的初步结果!

理论: [Phys.Rev.D 100 (2019) 9, 095020; Phys.Rept. 945 (2022) 1-105]

20

理论: [Phys.Rev.D 75 (2007) 037701; Phys.Rept. 945 (2022) 1-105]

类轴子的寻找

寻找类轴子的反应道之一: $\eta \rightarrow \pi^+\pi^-a \rightarrow \pi^+\pi^-\gamma\gamma$

● 请各位专家批评指正

遍举测量方案以进一步降低本底

