

Dilepton production at high baryon density

Yifei Zhang

University of Science and Technology of China

Huizhou, November 17, 2024

Outline

Introduction

Oilepton measurements at high baryon density

Summary

Discussion at HIAF energy

Introduction: penetrating probe in HIC

C. Shen

Electromagnetic probes =>

Do not participate in strong interactions.

Bring undistorted information as where produced. Penetrate medium properties.

Challenge: Time-space integrated from all stages. Continuum at IMR.

Introduction: in-medium dileptons

Solution IMR: Fireball properties like temperature, lifetime, pressure anisotropy.

CAR: ρ modification, chiral symmetry restoration, baryon catalyst, deconfinement or chiral transition

VLMR: Electrical conductivity, transport property as fundamental as η /s

Introduction: in-medium dileptons

Thermometer: Medium diagnostics, extract temperature from mass spectra
 Chronometer: Emission archaeology, predict lifetime from integrated yield

Introduction: searching for QCD phase diagram

Gao, Pawlowski, PLB 820 (2021) 136584 Cuteri, Philipsen, Sciarra, JHEP 11 (2021) 141 McLerran, Pisarski, NPA 796 (2007) 83 Glozman, Philipsen, Pisarski, EPJA 58 (2022) 12, 247

Key features of phase structure:

- QGP and hadronic phase
- ♦ Crossover at small μ_B ($\frac{\mu_B}{T} < 2$) compatible to all experimental observations.
- Transition temperature ($T_c \sim 156$ MeV) Lattice QCD and verified by exp. chemical freeze-out.
- 1st order phase transition at large μ_B and critical end point (CEP) are conjectured.

Introduction: searching for QCD phase diagram

HADES, Nature Phys. 15 (2019) 10, 1040-1045 NA60, Specht *et al.*, AIP Conf.Proc. (2010) 1322 Andronic *et al.*, Nature 561 (2018) no.7723

Key features of phase structure:

- QGP and hadronic phase
- ♦ Crossover at small μ_B ($\frac{\mu_B}{T} < 2$) compatible to all experimental observations.
- Transition temperature ($T_c \sim 156$ MeV) Lattice QCD and verified by exp. chemical freeze-out.
- 1st order phase transition at large μ_B and critical end point (CEP) are conjectured.
- $\diamondsuit \ \ Dilepton \ sensitive \ to \ medium \ property, \ \mu_B \\ dependence, \ especially \ high \ baryon \ density \ region.$

Nuclear matter phase tomography

RHIC BES-II program

Medium emissivity (excess yield and temperature) strongly dependents on collision energy.

Large statistics and iTPC upgrade provide a great opportunity to study dilepton production.

Dilepton mass spectra

Clear enhancement compared to cocktail contributions in both low mass region (LMR) and intermediate mass region (IMR)

Dilepton mass spectra

Clear enhancement compared to cocktail contributions in both low mass region (LMR) and intermediate mass region (IMR)

Dilepton mass spectra

Clear enhancement compared to cocktail contributions in both low mass region (LMR) and intermediate mass region (IMR)

Dilepton IMR from high to low energy

Intermediate Mass Region:

- Excess yield at 200 GeV higher than lower energy
- T is similar within uncertainties despite significant differences in collision energy and system size

 T_{IMR} is higher than T_{LMR} , ~ 2.9 σ at 200 GeV

 $T_{IMR}^{200GeV} = 293 \pm 11 \text{ (stat.)} \pm 27 \text{ (sys.) MeV}$ $T_{IMR}^{54.4GeV} = 303 \pm 59 \text{ (stat.)} \pm 28 \text{ (sys.) MeV}$ $T_{IMR}^{27GeV} = 280 \pm 64 \text{ (stat.)} \pm 10 \text{ (sys.) MeV}$ $T_{IMR}^{17.3GeV} = 245 \pm 17 \text{ MeV}$

NA60: EPJC 59 (2009) 607 STAR 27 & 54.4 GeV: arXiv: 2402.01998

Dilepton LMR from high to low energy

Low Mass Region:

Excess yield (normalized by the charged particle multiplicity) increases with collision energy

27 & 54.4 GeV: in-medium ρ dominant
200 GeV: hint of higher QGP contribution

```
T_{LMR}^{200GeV} = 199 \pm 6 \text{ (stat.)} \pm 13 \text{ (sys.) MeV}

T_{LMR}^{54.4GeV} = 172 \pm 12 \text{ (stat.)} \pm 18 \text{ (sys.) MeV}

T_{LMR}^{27GeV} = 167 \pm 21 \text{ (stat.)} \pm 18 \text{ (sys.) MeV}

T_{LMR}^{17.3GeV} = 165 \pm 4 \text{ MeV}
```

NA60: EPJC 59 (2009) 607 STAR 27 & 54.4 GeV: arXiv: 2402.01998

Dilepton LMR from high to low energy

Thermometer: temperature vs. μ_B

Chronometer: excess yield vs. collision energy

NA60: EPJC 59 (2009) 607 STAR 27 & 54.4 GeV: arXiv: 2402.01998

- Higher energy longer lifetime more excess yield
- Consistent with model calculation including QGP radiation and in-medium ρ modification

Summary

- Dilepton is ideal **penetrating probe** for QCD medium evolution and sensitive to its properties.
- Solution γ is significantly broaden. Excess yields play **chronometer** role for medium lifetime.
- Medium diagnostics with dilepton as thermometer:

 $T_{LMR} \sim 70-80$ MeV at SIS18

 $T_{LMR} \sim T_{ch} \sim T_{pc}$ at RHIC and SPS, hadronic phase dominant

 $T_{IMR} \sim 250-300 \text{ MeV} > T_{pc}$ at RHIC and SPS: QGP phase dominant

Current experiment with large uncertainties, data are still missing at lower energy region

=> The matter is far from over!

Discussion

What can we do at HIAF energy?

Experiments at high baryon density

RHIC BES-II program: C.M.S energy: 3.0 - 27 GeV μ_B coverage up to 750 MeV

SPS/NA60+ 6-17 GeV

NICA/MPD 4-11 GeV

FAIR/CBM 2-5 GeV

HIAF/CEE/CEE+ 2-4 GeV

Experiments at high baryon density

	E _k (GeV/u)	√s _{NN} (GeV)
HIAF p束	<9.3	<4.58
HIAF U束	<2.45	<2.85
HIAF-U U束	<9.1	<4.54

What we can do at HIAF energy?

10³

Possible evidence of chiral symmetry restoration

a1 is theoretically merged with ρ in hot medium
 > chiral symmetry is restored

20-30% enhancement w.r.t. no χ -mixing is predicted

Experimental challenge: physics background ($M_{\ell\ell} > 1 \text{ GeV/c}^2$)

- correlated charm: excellent vertex resolution → topological separation of prompt and non-prompt source employing DCA cut
- QGP: decrease towards lower energy
- \mathcal{D} rell- \mathcal{Y} an: pp, pA measurements

Electric conductivity of QCD matter

LGAD R&D at USTC for ATLAS HGTD

2019: Finished design of V1
2020: Fabrication of V1 at IME and tests at USTC/JSI
2021: V2 and V2.1 design and fabrication
2022: Test at USTC/JSI/DESY/CERN
2023: Pass ATLAS design Review finish pre-production

2024: Test of pre-production sensors pass production readiness review

K. Ma, Y. Liu@CLHCP2024

USTC provide 10% of the LGAD sensors for ATLAS HGTD (~2000 sensors)

AC-LGAD status at USTC

- Design and characterization tools fully developed during the R&D for HGTD
- Fabricated AC-LGAD prototypes at USTC
- Optimizing the AC-LGAD design to achieve: time resolution of 20 ps spatial resolution of order of 10 μm
- Will launch fabrication soon

V0 AC-LGAD prototype

Response to infrared laser

K. Ma, Y. Liu@CLHCP2024

 e/π separation power

AC-LGAD TOF with $\sigma = 30 \text{ ps}$

Huizhou, November 17, 2024

Thanks for your attention !

