HIAF 高能终端谱仪合作组会议, Nov 15-18, 2024

HIAF能区超子-核子相互作用和超核产生研究

Zhao-Qing Feng (冯兆庆)

School of Physics and Optoelectronics, South China University of

Technology, Guangzhou

*Email: fengzhq@scut.edu.cn

年前理ノ大学

报告概要

- ▶ 超子-核子相互作用和超核物理研究进展
- ➢ LQMD输运模型
- > 超子-核子相互作用和中子星物质性质
- > 超核产生动力学研究
- HIAF装置π介子和反质子束流相关物理讨论

▶ 总结和展望

2

d

12 2

2024/11/15

2. Strange particle production in HICs

Z. Q. Feng et al., Phys. Rev. C 90, 064604 (2014)

3. Hypernuclear production in HICs

- ① Neutron-rich/proton-rich HN nuclei and spectroscopies
- ② Multistrangeness HN (S=-2) $_{\Lambda\Lambda}X \not\approx_{\Xi} X$
- 3 Interaction potentials of NA, NE NNA, etc

Observation of a $\overline{K}NN$ bound state in the ${}^{3}\text{He}(K^{-}, \Lambda p)n$ reaction

H. Tamura, Prog. Theor. Exp. Phys. (2012) 02B012

(Hyper-)cluster production in HICs-statistical approach

A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Physics Letters B 697 (2011) 203–207

Pb+Pb

N. Buyukcizmeci, R. Ogul, A. S. Botvina, M. Bleicher, Phys. Scr. 95 075311 (2020)

Statistical multifragmentation model (SMM)

斜湾道森 2018年 第63巻 第8期:735~744

Transport model + coalescence approach

A.S. Botvina, J. Steinheimer, E.Bratkovskaya et al., Physics Letters B 742 (2015)7–14

J. Aichelin, E. Bratkovskaya, A. Le Fèvre et al., Physical Review C 101, 044905 (2020) A. Le Fèvre, J. Aichelin, C. Hartnack and Y. Leifels 100, Physical Review C 034904 (2019)

⁶Li+¹²C@2A GeV

中高能重离子碰撞中奇异粒子产生和超核形成机制

《中国科学》杂志社

冯兆庆
 中国科学院近代物理研究所、兰州 730000
 E-mail: fengzhq@impcas.ac.cn

Hyperons in neutron stars (NS)

S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012)

W. Z. Jiang, R. Y. Yang, and D. R. Zhang, Phys. Rev. C 87, 064314 (2013)

Diego Lonardoni, Alessandro Lovato, Stefano Gandolfi. and Francesco Pederiva. Phys. Rev. Lett. 114. 092301 (2015)

Lanzhou quantum molecular dynamics transport model (LQMD)

Heavy-ion collisions (5 MeV – 5 GeV/nucleon) and hadron induced reaction (p, \bar{p} , π , K, e, etc)

- **LQMD transport model** (Skyrme interaction, Walecka model with σ , ω, ρ, δ)
- Neutron star equation of state (nuclear symmetry energy at sub- and supra- saturation densities in HICs, isospin splitting of nucleon effective mass from HICs, particle production, 2-body and 3-body potential, multi-body correlation)
- In-medium effects of hadrons (optical potentials, energy conservation and in-medium effects, i.e., Δ(1232), N*(1440), N*(1535)), hyperons (Λ,Σ,Ξ) and mesons (π,Κ,η,ρ,ω,φ...))
- **Kinetic production of (hyper)clusters and nuclear fragmentation reactions** (production cross section, phasespace distribution, collective flows, cluster transportation, Mott effect, e.g., deuteron, triton, ³He, α, $_{\Lambda(\Sigma)}X$, $_{\Lambda\Lambda}X$, $_{\Xi}X$, $_{\overline{\Lambda}}X$)
- > Nuclear fusion near Coulomb barrier energies (barrier distribution, neck dynamics, fusion cross section etc)
- Hadron induced nuclear reactions (spallation reaction, physics at PANDA such as hypernuclear, neutron skin thickness etc)

1. Lanzhou quantum molecular dynamics transport model (LQMD-Skyrme)

$$H_B = \sum_{i} \sqrt{\mathbf{p}_i^2 + \mathbf{m}_i^2} + U_{\text{int}} + U_{\text{mom}}$$
$$U_{loc} = \int V_{loc}(\rho(\mathbf{r})) d\mathbf{r}$$

PHYSICAL REVIEW C 84, 024610 (2011)

Momentum dependence of the symmetry potential and its influence on nuclear reactions

Zhao-Qing Feng* Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China (Received 11 July 2011; published 19 August 2011)

$$V_{loc}(\rho) = \frac{\alpha}{2} \frac{\rho^2}{\rho_0} + \frac{\beta}{1+\gamma} \frac{\rho^{1+\gamma}}{\rho_0^{\gamma}} + E_{sym}^{loc}(\rho)\rho\delta^2 + \frac{g_{sur}}{2\rho_0} (\nabla\rho)^2 + \frac{g_{sur}^{lso}}{2\rho_0} [\nabla(\rho_n - \rho_p)]^2,$$

Phys. Rev. C 84, 024610 (2011); 85, 014604 (2012)

$$U_{mom} = \frac{1}{2\rho_0} \sum_{i,j,j\neq i} \sum_{\tau,\tau'} C_{\tau,\tau'} \delta_{\tau,\tau_i} \delta_{\tau',\tau_j} \int \int \int d\mathbf{p} \, d\mathbf{p}' \, d\mathbf{r} \, f_i(\mathbf{r},\mathbf{p},t) \\ \times \left[\ln(\epsilon(\mathbf{p}-\mathbf{p}')^2+1) \right]^2 f_j(\mathbf{r},\mathbf{p}',t).$$

$$E_{sym}(\rho) = \frac{1}{3} \frac{\hbar^2}{2m} \left(\frac{3}{2}\pi^2 \rho\right)^{2/3} + E_{sym}^{loc}(\rho) + E_{sym}^{mom}(\rho).$$

$$E_{sym}^{loc}(\rho) = \frac{1}{2} C_{sym}(\rho/\rho_0)^{\gamma_s} \qquad E_{sym}^{loc}(\rho) = a_{sym}(\rho/\rho_0) + b_{sym}(\rho/\rho_0)^2.$$

Table 1: The parameters and properties of isospin symmetric EoS used in the LQMD model at the density of 0.16 fm^{-3} .

Parameters	$\alpha \ ({\rm MeV})$	β (MeV)	γ	C_{mom} (MeV)	$\epsilon~({\rm c}^2/{\rm MeV^2})$	m_∞^*/m	K_{∞} (MeV)
PAR1	-215.7	142.4	1.322	1.76	5×10^{-4}	0.75	230
PAR2	-226.5	173.7	1.309	0.	0.	1.	230

2. Covariant energy-density functional (LQMD.RMF)

$$\begin{split} L &= \bar{\psi} [i\gamma_{\mu}\partial^{\mu} - (M_N - g_{\sigma}\varphi - g_{\delta}\vec{\tau}\cdot\vec{\delta}) - g_{\omega}\gamma_{\mu}\omega^{\mu} - g_{\rho}\gamma_{\mu}\vec{\tau}\cdot\vec{b}^{\mu}]\psi \\ &+ \frac{1}{2}(\partial_{\mu}\varphi\partial^{\mu}\varphi - m_{\sigma}^2\varphi^2) - U(\varphi) + \frac{1}{2}(\partial_{\mu}\vec{\delta}\partial^{\mu}\vec{\delta} - m_{\sigma}^2\vec{\delta}^2) \\ &+ \frac{1}{2}m_{\omega}^2\omega_{\mu}\omega^{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m_{\rho}^2\vec{b}_{\mu}\vec{b}^{\mu} - \frac{1}{4}\vec{G}_{\mu\nu}\vec{G}^{\mu\nu} \end{split}$$

Energy density functional

$$\varepsilon = \sum_{i=n,p} 2 \int \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + M_i^{*2}} + \frac{1}{2}m_\sigma^2 \varphi^2 + U(\varphi) + \frac{1}{2}m_\omega^2 \omega_0^2 + \frac{1}{2}m_\rho^2 b_0^2 + \frac{1}{2}m_\delta^2 \delta_3^2$$

Temporal evolution in phase space

$$\begin{split} \dot{\mathbf{x}} &= \frac{\mathbf{p}_{\mathbf{i}}^{*}}{p_{\mathbf{0}}^{*}} + \sum_{i \neq j}^{N} \{ \frac{g_{v}^{2}}{2m_{v}^{2}} z_{j}^{*\mu} u_{i,\mu} B_{i} B_{j} \frac{\partial \rho_{ij}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{g_{v}^{2}}{2m_{v}^{2}} z_{i}^{*\mu} u_{j,\mu} B_{i} B_{j} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{g_{v}^{2}}{2m_{v}^{2}} z_{j}^{*\mu} \rho_{ji} B_{i} B_{j} \frac{\partial u_{i,\mu}}{\partial \mathbf{p}_{\mathbf{i}}} \\ &+ z_{j}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{\rho_{ij}}{1 - p_{T,ij}^{2} / \Lambda_{v}^{2}} \frac{\partial u_{i,\mu}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{u_{i,\mu}}{1 - p_{T,ij}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ij}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{i,\mu} \rho_{ij} \frac{\partial [1 / (1 - p_{T,ij}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &- \frac{m_{j}^{*}}{p_{j}^{*0} \frac{\partial S_{j}}{\partial \mathbf{p}_{\mathbf{q}} / 11} \frac{m_{i}^{*}}{p_{i}^{*0} \frac{\partial S_{i}}{\partial \mathbf{p}_{\mathbf{i}}}} \}, \end{aligned}$$

$$12$$

Si-Na Wei, Zhao-Qing Feng, Nuclear Science and Techniques 35, 15 (2024) arXiv:2302.09984

$$F_{\mu\nu} = \partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu},$$

$$G_{\mu\nu} = \partial_{\mu}\vec{b}_{\nu} - \partial_{\nu}\vec{b}_{\mu},$$

$$U(\varphi) = \frac{g_2}{3}\varphi^3 + \frac{g_3}{4}\varphi^4$$

TABLE I: Parameter sets for RMF. The saturation density ρ_0 is set to be 0.16 fm^{-3} . The binding energy of saturation density is $E/A - M_N = -16$ MeV. The isoscalar-vector ω and isovector-vector ρ masses are fixed to their physical values, $m_{\omega} = 783$ MeV and $m_{\rho} = 763$ MeV. The remaining meson mass m_{σ} is set to be 550 MeV.

model	g_{σ}	g_{ω}	$g_2 (fm^{-1})$	g_3	$g_{ ho}$	g_{δ}	K (MeV)	$E_{sym}(\rho_0)$ (MeV)	$L \ (\rho_0) (MeV)$
set1	8.145	7.570	31.820	28.100	4.049	-	230	31.6	85.3
set2	8.145	7.570	31.820	28.100	8.673	5.347	230	31.6	109.3
set3	8.145	7.570	31.820	28.100	11.768	7.752	230	31.6	145.0

Symmetry energy

$$\mathbf{gy} \quad E_{sym} = \frac{1}{6} \frac{k_F^2}{E_F^*} + \frac{1}{2} \left[f_\rho - f_\delta \left(\frac{M^*}{E_F^*} \right) \right] \rho$$

$$f_{
ho,\delta}=g_{
ho,\delta}/m_{
ho,\delta}$$

3. Particle production

π and resonances (Δ (1232), N*(1440), N*(1535), ...) production:

 $NN \leftrightarrow N\Delta, NN \leftrightarrow NN^*, NN \leftrightarrow \Delta\Delta, \Delta \leftrightarrow N\pi,$ $N^* \leftrightarrow N\pi, NN \leftrightarrow NN\pi(s - state), N^*(1535) \leftrightarrow N\eta$

Collisions between resonances, NN* \leftrightarrow N Δ , NN* \leftrightarrow NN*

Strangeness channels:

$$\begin{array}{l} BB \rightarrow BYK, BB \rightarrow BBK\overline{K}, B\pi(\eta) \rightarrow YK, YK \rightarrow B\pi, \\ B\pi \rightarrow NK\overline{K}, Y\pi \rightarrow B\overline{K}, \quad B\overline{K} \rightarrow Y\pi, \quad YN \rightarrow \overline{K}NN, \\ BB \rightarrow B\Xi KK, \overline{K}B \leftrightarrow K\Xi, YY \leftrightarrow N\Xi, \overline{K}Y \leftrightarrow \pi\Xi. \end{array}$$

Reaction channels with antiproton:

$$\overline{p}N \to \overline{N}N, \ \overline{N}N \to \overline{N}N, \ \overline{N}N \to \overline{B}B, \ \overline{N}N \to \overline{Y}Y$$

$$\overline{N}N \rightarrow \text{annihilation}(\pi,\eta,\rho,\omega,K,\overline{K},K^*,\overline{K}^*,\phi)$$

Statistical model with SU(3) symmetry for annihilation (E.S. Golubeva et al., Nucl. Phys. A 537, 393 (1992))

The **PYTHIA** and **FRITIOF** code are used for baryon(meson)-baryon and antibaryon-baryon collisions at high invariant energies

III. 超子-核子相互作用和中子星物质性质

$$H_{Y} = \sum_{i=1}^{N_{Y}} V_{i}^{Coul} + V_{opt}^{Y}(\boldsymbol{p}_{i}, \rho_{i}) + \sqrt{\boldsymbol{p}_{i}^{2} + m_{Y}^{2}}$$

$$V_{opt}^{Y}(\boldsymbol{p}_{i}, \rho_{i}) = \omega_{Y}(\boldsymbol{p}_{i}, \rho_{i}) - \sqrt{\boldsymbol{p}_{i}^{2} + m_{Y}^{2}}$$

$$\omega_Y(\boldsymbol{p}_i, \rho_i) = \sqrt{(m_Y + \Sigma_S^Y)^2 + \mathbf{p}_i^2} + \Sigma_V^Y,$$

Phenomenological potential by fitting the results of chiral effective field theory

$$V_{opt}^{\Lambda}(\boldsymbol{p}_i, \rho_i) = V_a(\rho_i/\rho_0) + V_b(\rho_i/\rho_0)^2 + C_{mom}(\rho_i/\rho_0)\ln(\epsilon \boldsymbol{p}_i^2 + 1)$$

$$V_{opt}^{\Sigma}(\boldsymbol{p}_i, \rho_i) = V_0(\rho_i/\rho_0)^{\gamma_s} + V_1(\rho_n - \rho_p)t_{\Sigma}\rho_i^{\gamma_s} + C_{mom}(\rho_i/\rho_0)\ln(\epsilon \boldsymbol{p}_i^2 + 1).$$

Contents lists available at ScienceDirect Physics Letters B journal homepage: www.elsevier.com/locate/physletb

Letter

Extracting the hyperon-nucleon interaction via collective flows in heavy-ion collisions

Zhao-Qing Feng ^D

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

Phys. Lett. B 851 (2024) 138580

Extracting the hyperon-nucleon interaction via collective flows in heavy-ion collisions

Phys. Lett. B 851 (2024) 138580

The general flavor SU(3) symmetry

$$\mathcal{L}_{int} = \sum_{B} \bar{\psi}_{B} [g_{B\sigma}\sigma - \gamma_{\mu}(g_{B\omega}\omega^{\mu} + g_{B\phi}\phi^{\mu} + g_{B\rho}\vec{\tau}\cdot\vec{b}^{\mu})$$

300

(MeV) ∩ 100

100

0

0

Phys. Lett. B 853 (2024) 138658

 $U_{\Lambda}(\rho_0) = -U_{\Sigma}(\rho_0) = -30 \text{ MeV}, U_{\Xi}(\rho_0) = -14 \text{ MeV}$

 ρ/ρ_0

Correlation of the hyperon potential stiffness with hyperon constituents in neutron stars and heavy-ion collisions Si-Na Wei, ZQF, Wei-Zhou Jiang, PLB 853 (2024) 138658

High-density symmetry energy from hyperon production in heavy-ion collisions, Physics Letters B 846 (2023) 138180

Kinetic approach for cluster production

P. Danielewicz, G. F. Bertsch, Nuclear Physics A 533 (1991) 712-748
Akira Ono, Prog. Part. Nucl. Phys. 105, 139-179 (2019)
R. Wang, Y. G. Ma, L. W. Chen et al., Phys. Rev. C 108, L031601 (2023)
Hui-Gan Cheng, Zhao-Qing Feng, Phys. Rev. C 109, L021602 (2024)

Clusters are produced by multinucleon or nucleon-cluster collisions

$$\frac{d\sigma}{d\Omega} = P(C_1 + C_2 \to C_3 + C_4) \times \frac{v_{\tilde{p}_{\rm rel}}}{v} \frac{\left| [\partial e(k) / \partial k]_{k=\tilde{p}_{\rm rel}} \right|}{\left| [\partial H\left(p_f\right) / \partial p_f]_{p_f=p_{\rm rel}} \right|} \frac{p_{\rm rel}^2}{\tilde{p}_{\rm rel}^2} \left[\frac{d\sigma_{\rm NN}}{d\Omega} \right]_{\tilde{p}_{\rm rel}}$$

Tear	mouers	Author(s)	Ciuster(s)	спегду	inearineiri(s)
1991	pBUU	P. Danielewicz et al.	d, t, h	fermi /intermediate energies	kinetic, Mott cut
2013	AMD- cluster	A. Ono	2 <i>N</i> , 3 <i>N</i> , α	fermi /intermediate energies	kinetic, fermionic mean field
2021	SMASH	J. Staudenmaier et al.	d	GeV and higher	kinetic
2022	PHQMD	G. Coci et al.	d	GeV and higher	kinetic
2023	IBUU	R. Wang et al.	d, t, h, α	intermediate energies	kinetic, Mott cut
2023	LQMD	H. G. Cheng and Z. Q. Feng	d, t, h, α	fermi /intermediate energies	Kinetic, binding energy, Pauli effects

 $N_1+N_2 \leftrightarrow deuteron, N_1+N_2+D_1 \rightarrow deuteron+N'_1, N_1+N_2+N_3 \leftrightarrow triton (helium-3),$

 $N_1+N_2+N_3+D_1 \rightarrow triton \text{ (helium-3)}+N'_1, N_1+N_2+N_3+N_4 \leftrightarrow alpha$

. . .

 $p+\Lambda \leftrightarrow \Lambda^{2}H, p+\Lambda+n \leftrightarrow \Lambda^{3}H, p+\Lambda+n+n \leftrightarrow \Lambda^{4}H, p+\Lambda+\Lambda \leftrightarrow \Lambda\Lambda^{3}H, p+n+\Lambda+\Lambda \leftrightarrow \Lambda\Lambda^{4}H$

Novel approach to light-cluster production in heavy-ion collisions

Hui-Gan Cheng and Zhao-Qing Feng® School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

(Received 8 November 2023; accepted 25 January 2024; published 15 February 2024)

Hypernuclide production via HICs (Wigner density approach)

¹²⁴Sn+¹²⁴Sn@2A GeV

(b)

Z. Q. Feng, Phys. Rev. C 102, 044604 (2020) Data: C. Rappold et al., (HypHI collaboration) Phys. Lett. B 747, 129 (2015)

10²

- Beryllium

Carbon

Beryllium (Λ)
 Carbon (Λ)

(a)

2024/11/15

Multi-strangeness hypernuclide production

H.G. Cheng, Z. Q. Feng, Phys. Lett. B 824 (2022) 136849

TABLE I. Comparison between cross sections of double lamda hypernuclei calculated with $r_0 = 3.5$ fm for Λ in $^{197}Au + ^{197}Au$ and $^{40}Ca + ^{40}Ca$ collisions at 3A GeV

Hypernuclei	Cross sections (mb)				
	$^{197}Au + ^{197}Au$	40 Ca + 40 Ca			
$^{4}_{\Lambda\Lambda}H$	$2.6 imes10^{-2}$	$1.0 imes 10^{-4}$			
$^{4}_{\Lambda\Lambda}$ He	$1.0 imes10^{-2}$	$\sim 10^{-5}$			
$^{5}_{\Lambda\Lambda}\mathrm{H}$	$5.9 imes 10^{-3}$	$\sim 10^{-5}$			
$^{5}_{\Lambda\Lambda}\mathrm{He}$	$5.1 imes 10^{-3}$	$\sim 10^{-5}$			
$^{5}_{\Lambda\Lambda}$ Li	$1.4 imes 10^{-3}$	$\sim 10^{-6}$			
$^{6}_{\Lambda\Lambda}\mathrm{He}$	$2.2 imes10^{-3}$	$\sim 10^{-6}$			
$^{7}_{\Lambda\Lambda}\mathrm{He}$	$6.8 imes 10^{-4}$	$\lesssim 10^{-6}$			

IV. HIAF装置π介子和反质子束流相关物理讨论

(Hyper) nuclear fragments with antiproton induced reactions

2.0 pion anti-kaon 10° 1.5 $10 \times \overline{K}^0$ 1.0 10-1 K Multiplicity 700 cm 0.5 Multiplicity 0.0 kaon hyperor 10° 10×K⁰ $\Sigma(\Sigma)$ 10 0.02 K⁺ 0.00 10 20 40 60 80 20 60 40 80 0 0 t (fm/c) t (fm/c) 10 10³ GiBUU (p+64Cu@ 5GeV/c) (a) LEAR data (p+⁶³Cu@105 MeV/c) (b) LQMD (p+63Cu@ 5GeV/c) LQMD (p+63Cu@5 GeV/c) 10² 10² Nuclear fragmen 10¹ 10¹ Nuclear fragmen da/dZ (mb) da/dA (mb) 10° 10 10 ∆-fragments 10 10⁻² 10 10-3 AA-fragment A-fragme 10-4 10 0 10 20 25 30 0 10 20 30 40 50 60 15 Z А

Zhao-Qing Feng, Physical Review C 101, 064601 (2020); 93, 041601(R) (2016)

PHYSICAL REVIEW C 94, 054617 (2016)

Nuclear fragmentation and charge-exchange reactions induced by pions in the Δ -resonance region

Zhao-Qing Feng*

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China (Received 5 September 2016; revised manuscript received 11 October 2016; published 18 November 2016)

The dynamics of the nuclear fragmentations and the charge exchange reactions in pion-nucleus collisions near the $\Delta(1232)$ resonance energies has been investigated within the Lanzhou quantum molecular dynamics transport model. An isospin-, momentum-, and density-dependent pion-nucleon potential is implemented in the model, which influences the pion dynamics, in particular the kinetic energy spectra, but weakly impacts the fragmentation mechanism. The absorption process in pion-nucleon collisions to form the $\Delta(1232)$ resonance dominates the heating mechanism of the target nucleus. The excitation energy transferred to the target nucleus increases with the pion kinetic energy and is similar for both π^- - and π^+ -induced reactions. The magnitude of fragmentation of the target nucleus weakly depends on the pion energy. The isospin ratio in the pion double-charge exchange is influenced by the isospin ingredient of target nucleus.

DOI: 10.1103/PhysRevC.94.054617

基于HIAF集群的高强度缪子、反质子次级束产生 及其物理研究展望

孙志宇^{1,2*}, 陈良文¹, 蔡汉杰¹, 李亮^{3,4}, 尤郑昀⁵, 袁野^{2,6}, 王莹⁵, 谢聚军^{1,2}, 冯兆庆⁷, 王世陶^{1,2}

中国科学院近代物理研究所,兰州 730000;
 中国科学院大学,北京 100049;
 上海交通大学物理与天文学院,上海 200240;
 上海市粒子物理和宇宙学重点实验室,上海 200240;
 中山大学物理学院,广州 510275;
 中国科学院高能物理研究所,北京 100049;
 华南理工大学物理与光电学院,广州 510641
 *联系人,E-mail: sunzhy@impcas.ac.en

VI. 总结和展望

- The Extremely proton-rich/neutron-rich hypernuclides might be created via heavy-ion collisions at HIAF energies, e.g., ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H production in the reaction of 20 Ne+ 12 C at HIAF.
- > The high-density symmetry probes single and double ratios of Σ^{-}/Σ^{+} (double ratio) via the isotopic reactions ¹¹²Sn+¹¹²Sn and ¹²⁴Sn+¹²⁴Sn, in particular above 0.4 GeV.
- > The 3-body interaction potentials, e.g., $\Lambda NN, \Sigma NN, \Xi NN$ etc, might be constrained via heavy-ion collisions at HIAF.
- > Antiproton and pion beams are being expected at the HIAF facility for hypernuclear physics, inmedium properties of hadrons, neutron-skin thickness, equation of state.

