"十二五"国家重大科技基础设施建设项目

强流重离子加速器装置 (HIAF) 建设进展与终端束流性能

一、工程概况

- 二、总体方案和工程主要进展
- 四、实验终端建设及束流性能

五、总结与展望

主要内容

一、工程概况

- 二、总体方案和工程主要进展
- 四、实验终端建设及束流性能

五、总结与展望

核物质起源、结构、性质和演化的研究是物质科学前沿

直线加速器

SPIRL2

重离子碰撞是实验室产生和研究 核物质的<mark>最佳手段之一</mark>

世界科技强国正在或者计划建造下一代 强流离子加速器大科学装置

通过高流强、高能量、高功率抢占基础前沿研究<mark>制高点</mark>!

法国

HIAF加速器设计历程

HIAF加速器设计历程

FCD/LIS	Table 1 HIAF main design par	rameters of typical U ³⁴⁺ ion be	eam. ppp denotes particle per pulse.					
LCK/LIS	Machine	lon Energy	Intensity			53	inter la	
	ECR source	11 ³⁴⁺ 60 kV/g	0.02 pmA			STOL AND MANY		R
	LIS source	U ³⁴⁺ 60 kV/q	0.1 pmA	5	A CARLON AND	ALL AND		SECK
	HISCL	U ³⁴⁺ 25 MeV/u	0.015–0.075 pmA		and the second s	all and a second and		1100-2-
		U ⁷⁶⁺ 40 MeV/u	0.003–0.015 pmA		A REAL PROPERTY AND	SRing		
-	ABR-45	U ³⁴⁺ 1.2 GeV/u	$0.25 - 1.3 \times 10^{11} \text{ ppp}$	ALL ALL		**************************************	iLina	
<i>S</i>		U ⁷⁶⁺ 3.4 GeV/u	$0.5-2.5 \times 10^{10} \text{ ppp}$	KALKA U	and a state of the	in the	· · · · ·	
Ë	CSR-45	U ³⁴⁺ 1.2 GeV/u	$1.0-5.0 \times 10^{11} \text{ ppp}$		ALL			
H		U ⁷⁶⁺ 3.4 GeV/u	$0.2-1.0 \times 10^{11} \text{ ppp}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHERCE CONTRACTOR			
		U ⁹²⁺ 4.4 GeV/u	$0.2-1.0 \times 10^{11} \text{ ppp}$		BRING ELECT		12	
	MCR-45-1(2)	U ³⁴⁺ 1.2 GeV/u	$1.0-5.0 \times 10^{11} \text{ ppp}$		a the second			
		U ⁷⁶⁺ 3.4 GeV/t	$0.2-1.0 \times 10^{11} \text{ ppp}$					
	Ma	U ⁹²⁺ 4.4 GeV/t	$0.2-1.0 \times 10^{11} \text{ ppp}$		Made and a state of the state	w		
			and the second					
45	= T	而日的丁禾	早目标 建设	一台国际	领牛水平	的重离子	一加速	
45	-) -	火日 的 上 1	主日 小 o 天 b		W/U/VI	リエトリ	MF IC	
	HH IL A TT	L'a VIL TTT E		二方化山	小子主山山	KL TH	= 111 AK	
	器综合研	究装置。	1. 备产生极 瑞	亚岗稳正:	线核系的目	它刀, 可力	E 洪 肥	
	TH M. H M	/u// II //				- / / / /		
igh Purity &								
ity RIBs Stati	旦世国少	5 250M-	11. 的现法江	法面京卫	亩和35Ma	$V/_{11} = 5.70$	CoV/II	1
	里氾团闪	3 - 250 Me	V/U的短加上	: 头里肉、	木 TP JJME	v/u J. /	Gev/u	N.
								Sin SEC
Matt Dense plasm		No		11 11 11 +		77 - 1- 1- 1-	- 11. 11.	iLinac
High-Energy-	的脉冲重	离子束	白鉴别新核素	扩展核素	版冬、研究	 级 束 缚 权	多结构	·
ingit Energy	11/11-1 王	14 1 1291		4 IN MAI		44 -12 - 4 12	I-PIV	. \
								in -
	1. 1. 1. 11	41 1+ 11 1	日川生水川目江	南西山山	后主人历	又拉旺里	三担什	
	和反应机	前、特别之	巨有朔测重卫	一两亿正线	拉府印尿	丁仪贝耳	王灰洪	
						and an		
	国际领生	的研究久	任					
J.C. Y	国阶视九	山川九木	110					

HIAF加速器总体布局

强流超导直线iLinac、快循环同步环BRing与六大实验终端结合

HIAF科学目标与定位

HIAF与FAIR是同期建设重离子加速器装置

HIAF特色和优势: 束流指标和时间窗口 重复 离子 设计 达到 研究所 装置 频率 种类 流强 流强 BNL AGS Booster Au^{32+} 5×10^{9} CERN LEIR Pb54+ 9×10^{8} JINR NICA Au³²⁺ 4×10^{9} GSI **J** J28+ **SIS18** 2.7Hz 1.0×10¹¹ 3×10^{10} FAIR **SIS100** 2.7Hz 1]28+ $(1.0-2.0) \times 10^{11}$ IMP **HIAF-BRing** 3-5Hz **U**45+ 2.0×10^{11} IMP **HIAF-SRing U**45+ 1.0×10^{12}

•

国际上脉冲流强最高的快循环重离子同步加 速器、精度最高的核质量环形谱仪

一、工程概况

二、总体方案和工程主要进展

四、实验终端建设及束流性能

五、总结与展望

总体方案

- 第四代超导ECR离子源——产生高电荷态强流离子束(产额、磁刚度需求、寿命)
- ・ 超导直线加速器iLinac——预加速器 (空间电荷效应、磁刚度要求、造价……)
- ・ 增强器Booster Ring ——主加速器 (动态真空、共振线、快循环……)

核心关键技术-1: 第四代ECR离子源

核心关键技术-2: 强流超导重离子直线加速器

3HB入口到SC段出口传输效率: 81.26%, 大部分低能离 子损失在中能段

100 eµA左右¹⁶O⁶⁺束流在RFQ中的传输效率达 到98%以上,加速效率达到87%以上,引出束流 能量为0.804 MeV/u,达到设计指标

核心关键技术-3:非谐振快循环同步加速器

挑战1: 动态真空效应

- 東流损失解吸引起剩余气体压力变化
- ・ 气体压力变化导致更严重的束流损失

挑战2:空间电荷效应

- · 束流自身的空间电荷场引起的聚焦散焦 (非线性)
- 穿越共振线导致束流损失

快循环加速

引起束流损失: 速度越快损失越小

Peter Spiller, LHC Lumi 06, Valencia 10.2006

核心关键技术-3:非谐振快循环同步加速器

突破了12T/s(40000A/s)国际最快速率重离子非谐振加速技术,解决了我 国重大科技基础设施HIAF工程<mark>难题挑战</mark>,为国际同类装置提供了<mark>新方案</mark>

现状: 国际上尚未找到彻底解决方案

德国FAIR二极铁电源上升率20000A/s (300MW配电); 欧洲CERN 60MW 电源上升率 11000A/s

创新1: 国际首台全储能大功率高精度非谐振电源

创新2: 首创骨架内衬极高真空超薄壁真空室

突破: 国际领先高梯度大孔径纳米晶磁合金环高频系统

核心关键技术-3:非谐振快循环同步加速器

<mark>首次</mark>提出了变前励全储能拓扑结构,实现<mark>国际最快</mark>非谐振加速速率,解决了感性 负载电源对电网冲击的<mark>难题</mark>

研发了新一代高性能实时全数字控制器,大幅提高响应速度和精度;创新提出 动态电感辨识算法,解决了动态电感随电流波形时变的识辨难题

・ 从原理样机到全尺寸样机、再到国际首台大型非谐振全储能快循环脉冲电源,实现了上升速率38kA/s、
 4kA脉冲电流输出,配电和消耗功率大幅下降(约一个量级)

<mark>核心关键技术-3:非谐振快循环同步加速器</mark>

■国际方案: 薄壁加筋方案

- Replacement of all dipole- and quadrupole chambers by new, NEG coated chambers
- Improved bake-out system for operation up to 300K

NEG coating facility commissioned. First sector equipped with new, coated chambers.

首次提出"骨架内衬"极高真空室方案,攻 克技术和工艺难题,成功研制全尺寸样机,真空 度10⁻¹²mbar,达国际领先水平

<mark>核心关键技术-3:非谐振快循环同步加速器</mark>

解决了从材料到工艺等核心技术难题,打破国外技术封锁与禁售,成功研制整体性能 达到国际先进水平的高性能大尺寸液冷磁合金环

> 离子源系统:完成所有设备安装及测试,正在开展束流调试及参数优化。

▶ 常温直线: RFQ加速器完成脉冲与连续波功率锻炼; MEBT全部设备完成安装及真空贯通, 正在开展带束调试。

> BRing完成磁铁、高频、真空、束诊等设备安装及测试,实现设备安装、综合布线与BIM建模1:1精准施工,全 环真空贯通及烘烤,真空度进入E-12mbar量级,最高真空度达到5E-12mbar。

BRing 弧段

强电布线

19

≻ SRing完成磁铁、真空、束诊等设备安装,逐段开展真空烘烤; 1/6段真空烘烤完成,最高真空度达到5.2E-12mbar。

SRing82弧段

SRing直段

SRing83弧段

20

12台变前励全储能二极磁铁电源全部完成安装调试,可靠性和稳定性全面验证,同步性和指标优于设计验收指标;直流电源逐步进场安装,开展电源与磁铁联调测试。

高频系统:5套磁合金腔体均已在线安装测试完成,电压梯度超过35Kv/m,达到设计指标。正在开展功率源与负载联合调试。

- ▶ 10kW制冷机完成机械和电气检查,完成PID与施工符合性检查。开始循环工质净化处理。隧道内低温分配阀箱机械精准就位完成,正在内管焊接和检漏等收尾。预计2024年12月底见液。
- ▶ 2.5kW制冷机完成机械、电气检查;压缩机开始上电,制冷机开始降温。
 预计2024年11月底完成调试。

一、工程概况

- 二、总体方案和工程主要进展
- 四、实验终端建设及束流性能

五、总结与展望

实验终端-1: 低能综合研究平台

□ 流强最高的低能CW重离子束流 (U:15pµA、Kr:20pµA、Ar:60pµA) □ 分时并行供束,90%束流时间可用于 该终端,年机时大于5000小时 (3) (2)强流离子束辐照终端 充气反冲谱仪终端

面积1500平米 ① 强流离子束辐照终端 ② 低能核结构谱仪 ③ 多核子转移反应终端

MRTOF质谱仪 重核质量测量 Gas: 0.5-3.5 L/min; 0.8 bar 99.999% Ar, He, O₂, Air --热色谱装置 超重元素化学性质 新元素和同位素、衰变谱学

评价先进核能材料抗辐照性能

新元素和缺中子新核素合成、衰变谱学

多核子转移反应终端

实验终端-2: 高能综合研究平台

1 核物质相结构终端
 2 超核终端
 3 高能单粒子效应终端
 D 宽能量范围全离子

□ 完設量泡出
□ 高品质慢引出

・ 核物质相结构终端

寻找QCD相变临界点

・超核终端

研究超核性质、扩展超核存在版图

离子种类	能量 (GeV/u)	流强 (ppp)
р	9.3	6.0×10 ¹²
12 C 6+	4.2	1.2×10 ¹²
⁷⁸ Kr ¹⁹⁺	1.7	6.0×10 ¹¹
²⁰⁹ Bi ³¹⁺	0.85	2.4×10 ¹¹
238U35+	0.835	2.0×10 ¹¹

・ 高能单粒子效应终端

模拟整机和小卫星空间运行环境 的综合、复杂辐射场 25

实验终端-2: 高能综合研究平台

□ BRing慢引出系统:

六极铁的作用:相空间发生形变,逐渐由圆变成三角形,随着六极磁铁强度继续增大,三角形的 面积越发规则,当增大到一定程度时,束流便从三角形的三个顶点开始,沿着延长线发射度迅速 增大而引出

<u>实验终端-2:高能综合研究平台</u>

BRing慢引出系统:

△p/p或X或Q

实验终端-2:高能综合研究平台

□ BRing慢引出系统:

- 1. 调节六极铁强度:影响稳定区面积
- 2. 调节工作点:磁聚焦结构发生变化
- 3. RF-KO横向激励,增大横向发射度

Time To Trigger v.s. # Leading Edge Canvas_1_n6 5000 View Options Too timeToTrig [ns] 453 ProjectionY of binx=2 [x=0.5..1.5] slice_py_of_hTimeToTrigE Entries 314284 Mean 2188 Std Dev 968.5 2431 066 1200 932 4000 69.1 1000 800 3000 600 400 2000 56ns 200 1000 2000 3000 4000 timeToTrig [ns] 1000 Apr. 2023, 340MeV/u 56Fe C [=788ns 2 3 5 0 1 6 # leading edge

□ BRing慢引出系统:

典型粒子	238	J 35+	р	$\begin{bmatrix} 0.006 \\ \bullet \\ $
引出能量-MeV/u	200	835	9300	0.004 - 0.001 -
引出粒子数-ppp	3.0×	3.0×10 ¹⁰		0.002 -
引出磁刚度-T·m	14.6	34	34	$\begin{bmatrix} \hat{p} \\ \hat{p} \\ \hat{p} \end{bmatrix}_{0,000} \begin{bmatrix} x_{r_0} = 56mm \end{bmatrix}$
引出发射度ε _x /ε _y -πmm.mrad	24/12	56/28	6/3	-0.002 - Hardt 冬件
束团长度-ns	800	650	334	$\begin{bmatrix} -0.004 \end{bmatrix}$ ξ_x=-0.3 ε ₁ μμησ
束团Δp/p-‰	±1.9	±1.0	±0.5	
连续束Δp/p-‰	±0.9	±0.5	±0.3	-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 x (m)
	₩₩₩			
慢 ● 3块引出	争电偏转板4	12ES01~42	2ES03	local orbit1
- 4块引出り	D割铁51MS	601~51MS	04	
□	失在42ES0 ²	1处产生凸结	ћ <u>⊢</u> ⇒	The second sec
件 6 3块凸轨码	兹铁在51MS	501处产生	凸轨 」	-0.05 Distance (m) 569.1 29

<mark>实验终端</mark>-2:高能综合研究平台

静电偏转板实物图

42ES01阳极丝:≤0.1mm 160kV@d=17.7mm,梯度场:<mark>90.4kV/cm</mark>

<mark>实验终端-3:放射性束流线 HFRS</mark>

HFRS是磁刚度最高的高性能次级束流分离器,用于产生、分离、纯化、传输短寿命奇异原子核。HFRS 由预分离器和主分离器组成,可开展次级束流的两级纯化,同时,还可作为独立的高性能磁谱仪开展实 验研究。除传统的放射性束物理研究外,HFRS尤其可开展极丰中子奇异核研究,如超核和△共振等。

实验终端-4:高精度环形谱仪

- 国际上脉冲流强最高的初级束流强
- 多模式运行:等时性模式、内靶模式、正常模式、堆积模式
- 国际精度最高的环形核质量谱仪和首创基于双TOF的质谱术
- 等时性质谱仪

电子离子复合共振谱仪

- 双TOF探测器,首创Bp-研究强场QED效应、 defined等时性质谱术 测量核电荷分布半径
- 精确测量原子核质量

4

和寿命 (半衰期大于10ms)

① 等时性质谱仪 ②电子离子复合共振谱仪 ③共振肖特基谱仪 ④核反应装置 共振肖特基谱仪 核反应装置

> 测量反应截面,揭示奇特核 结构、理解天体环境核过程 32

一、工程概况

- 二、总体方案和工程主要进展
- 四、实验终端建设及束流性能

五、总结与展望

HIAF未来升级计划 (HIAF-U)

研究机构	加速器	建成时 间	典型离子束	典型离子束能量	束流强度或束流功率	
德国GSI	FAIR SIS100	2025	238U28+	2. 7 GeV/u	$5 \times 10^{11} \text{ppp}$	
美国MSU	FRIB	2021	238U76-80+	200 MeV/u	CW 13 рµА	
战罗斯JINR	NICA-Booster	2023	¹⁹⁷ Au ³²⁺	4. 5 GeV/u	4×10 ⁹ ppp	
欧洲	EURISOL 驱 动加速器	建议	H-, H+, ³ He ²⁺	1.0 GeV/q	4 MW	
			238U35+	0. 8 GeV/u	1.0-2. 0×10 ¹¹ ppp	
	HIAF	2025	238U76+	2. 45 GeV/u	0.5-1.0×10 ¹¹ ppp	
中国IMP			р	9.3 GeV/u	5×10 ¹³	
			238U35+	2. 95 GeV/u	2. 0×10 ¹² ppp	
	HIAF-U	2027-	238U76+	7. 3 GeV/u	1.0×10 ¹² ppp	
	BRing-S	2032	238U92+	9. 1 GeV/u	1.0×10 ¹² ppp	
			р	25.0 GeV/u	4.0×10 ¹⁴	
	HIAF-U 2027- MRing 2032		238U92+	4. 4 GeV/u	$2 \times 10^{12} \text{ ppp}$	
	HIAF-U iLinac	2027- 2032	238U46+	150-200 MeV/u	1 emA	
	HIAF-ISOL 驱动加速器	2027- 2032	H-, H+	0. 5-1. 0 GeV/u	5-10 mA (2.5~10 MW)	

HIAF安装计划

		2023年 全面		直 2024年	1 2024年			2025年					
		7~9月	10~12月	1~3月	安	装 4~6月	7~9月	10~12月	1~3月	4~6月	7~9月	10~12月	
工艺 设备	束流前端	批量加工与调试		预装配		安装	RF RF	Q 出束					
	超导直线		调试	J试				安装与调试				k	
	BRing	批量加工与调试		t 🔶	进	<mark>场安装</mark> 安装	与调试 🍞	闭环	分段 (11)	出束		👅 出束	联调
	HFRS	批量加工与		调试			安装	安装与调试					出束
	SRing	批量加工与计		调试				闭环	1	📕 🗲	线贯通		实验
	束线终端	批量加工与调		调试					l				研究
	工艺样段	BRing样段测试											
	水冷通风	安装调试		■ 具备	■ 具备进场条件								
公用	配电	临电供电			■ 正式电启用 エ				艺配电安装				
配套	低温	具备低温测试			则试条件 ■ 在线安装 ●2.5kW ● 10kW制冷机见液								
	综合布线	材				乔架安装、线缆敷设							
	地下隧道												
	综合大厅/二三号站房						十建						
土建	一号制冷中心						上と						
施工	一号/二号测试大厅						<u>797</u> 78						
	直线设备楼2												
	直线设备楼1/一号站房					土建完工							

- HIAF在动力学和核心关键技术方面实现了一系列创新突破,保证了装置的创新
 性,也为实现国际领先指标打下了坚实基础,建成后将是国际上重要的重离子科
 学研究平台
- ・工程整体进展顺利,土建完工,公用配套进入收尾,工艺设备加工、测试基本完成,分区分段安装全面展开,安装进度好于预期,能够保证如期完成建设任务
- ・ 接下来将进一步加快工程进度,重点加强超导直线、放射性束流分离器HFRS相 关设备测试安装进度,确保按期完工

