低能中微子核子散射

(Low-energy neutrino-nucleon scattering in ChPT)

- De-Liang Yao, Hunan Univ.-

第二届惠州大科学装置高精度物理研讨会 暨基于 HIAF 加速器集群的缪子科学与技术研讨会

August 23-27, 2024, Guangzhou, China

D.-L. YAO, talk @ Guangzhou 1 / 25

Introduction

2 Neutral current elastic neutrino-nucleon scattering

3 Weak single pion production off the nucleon

Summary and Outlook

I. Introduction

Neutrino physics

□ Report of the 2023 P5

Reveal the Secrets of the Higgs Boson

Pursue Quantum Imprints of New Phenomena

Understand What Drives Cosmic Evolution

□ Elucidate the mysteries of neutrinos

- 🛯 Abroad: DUNE, IceCube-Gen2, NOνA, T2K, LEGEND , XLZD, nEXO, ...
- Domestic: JUNO, JUNO-TAO, PandaX-xT, CDEX-1T, CNUF ...

[https://www.usparticlephysics.org/2023-p5-report/]

Neutrino interaction with matter

$\hfill\square$ At the heart of many interesting and relevant physical phenomena

[Neutrinos in particle physics , astronomy and cosmology, Z-Z. Xing and S. Zhou, 2010]

Neutrino-nucleon scattering:

 \rightarrow a bridge connecting hadron physics and nuclear physics \rightarrow Important contribution to the inclusive

neutrino-nuclei (νA) cross section

Processes of neutrino-nucleon scattering

□ Two categories of processes:

Charged-Current (CC) & Neutral-Current (NC) induced.

□ Different processes in different energy regions

Total cross section per nucleon (Prediction by NUANCE generator).

- Solution Charged current: **CCQE** \implies **IS** (RES,CC1 π ,···) \implies **DIS**
- \bowtie Neutral current : NCE \implies IS (RES,NC1 π , \cdots) \implies DIS

Processes of neutrino-nucleon scattering

□ CC processes:

CCQE

IE

DIS

□ NC processes:

II. Neutral current elastic νN scattering

J. M. Chen, Z. R. Liang and DLY, Front. Phys. (Beijing) 19 (2024) 6, 64202

□ Low energies:

NCE:
$$\nu + N \rightarrow \nu + N$$
, CCQE: $\nu_{\ell} + N \rightarrow \ell + N$

NCE processes are sensitive both to isovector and isoscalar weak current!

 $\hfill\square$ Strangeness contribution to the nucleon spin $\Delta s = G^s_A(Q^2=0)$

- \blacksquare 1980s, the E734 experiment at BNL: $0.45 \leq Q^2 \leq 1.05~{\rm GeV}^2$ [Ahrens et al., PRD1985]
- Solution 2010 & 2015, the MiniBooNE experiment at FNAL: $Q^2 \le 2 \text{ GeV}^2$ [Aguilar-Arevalo et al., PRD2010 & PRD2015)]
- The future MicroBooNE experiment in Argon: $0.1 \le Q^2 \le 1 \text{ GeV}^2$ [Ren, JPS Conf. Proc. 37, 020309 (2022).]

□ Various parametrizations for form factors

- Dipole parametrization
- z expansion

rg

A model-independent and systematical study is needed!

Kinematics & amplitude structure

 \Box Kinematics: $\nu(q_1) + N(p_1) \rightarrow \nu(q_2) + N(p_2)$

$$\mathcal{M} = -\frac{G_F}{\sqrt{2}} L_\mu H^\mu \; ,$$

Leptonic part: $L_{\mu} = \bar{\nu}(q_2)\gamma_{\mu}(1-\gamma_5)\nu(q_1)$, Hadronic part: $H^{\mu} = \langle N(p_2)|\mathcal{J}_{NC}^{\mu}(0)|N(p_1)\rangle$.

□ Hadronic amplitude \rightarrow 6 form factors (FFs) Isospin structure: isovector (V) & isoscalar (S)

$$\begin{split} H^{\mu} &= \chi_{f}^{\dagger} \left[\frac{\tau_{a}}{2} H_{V}^{\mu} + \frac{\tau_{0}}{2} H_{S}^{\mu} \right] \chi_{i} , \quad a = 3, \\ H_{V}^{\mu} &= (1 - 2\sin^{2}\theta_{W}) V_{V}^{\mu} - A_{V}^{\mu} , \quad H_{S}^{\mu} = -2\sin^{2}\theta_{W} V_{S}^{\mu} \end{split}$$

Lorentz decomposition:

$$\begin{split} V_{V,S}^{\mu} = & \bar{\mathbf{u}}(p_2) \left[\gamma^{\mu} F_1^{V,S}(t) + \frac{i}{2m_N} \sigma^{\mu\nu} q_{\nu} F_2^{V,S}(t) \right] \mathbf{u}(p_1), \\ A_V^{\mu} = & \bar{\mathbf{u}}(p_2) \left[\gamma^{\mu} \gamma_5 G_A(t) + \frac{q^{\mu}}{m} \gamma_5 G_P(t) \right] \mathbf{u}(p_1) \; . \end{split}$$

D.-L. YAO, talk @ Guangzhou 8 / 25

Form factors from BChPT

 \Box Calculation up to $\mathcal{O}(p^3)$

□ Form factors in a chiral series

$$\begin{split} F_1^V(t) =& 1 - 2d_6t + F_1^{V,\text{loops}} + F_1^{V,\text{wf}} ,\\ F_2^V(t) =& c_6 + 2d_6t + F_2^{V,\text{loops}} + F_2^{V,\text{wf}} ,\\ F_1^S(t) =& 1 - 4d_7t + F_1^{S,\text{loops}} + F_2^{S,\text{wf}} ,\\ F_2^S(t) =& (c_6 + 2c_7) + 4d_7t + F_2^{S,\text{loops}} + F_2^{S,\text{wf}} ,\\ G_A(t) =& g + (4d_{16}M^2 + d_{22}t) + G_A^{\text{loops}} + G_A^{\text{wf}} ,\\ G_P(t) =& \frac{2gm_N^2}{M^2 - t} + \frac{4m_N^2M^2(2d_{16} - d_{18})}{M^2 - t} + \frac{4gm_N^2M^2\ell_4}{F^2(M^2 - t)} - 2m_N^2d_{22} \\ &\quad - \frac{4gm_N^2M^2\Big[M^2\ell_3 + (M^2 - t)\ell_4\Big]}{F^2(M^2 - t)^2} + G_P^{\text{loops}} + G_P^{\text{wf}} , \end{split}$$

Remarks:

- Wave function renormalization
- ${\tt IS}$ UV divergences: dimensional regularization (DR) with $\overline{\rm MS}\mbox{--}1~(\widetilde{\rm MS})$ subtraction
- PCB terms: EOMS scheme

NCE scattering within EOMS scheme

Essence: two-step renormalization $(\widetilde{MS}+finite)$

1. UV subtraction:

$$m = m^{r}(\mu) + \beta_{m} \frac{R}{16\pi^{2}F^{2}} ,$$

$$g = g^{r}(\mu) + \beta_{g} \frac{R}{16\pi^{2}F^{2}} ,$$

$$c_{i} = c_{i}^{r}(\mu) + \beta_{c_{i}} \frac{R}{16\pi^{2}F^{2}} ,$$

$$d_{j} = d_{j}^{r}(\mu) + \beta_{d_{j}} \frac{R}{16\pi^{2}F^{2}} .$$

2. Finite subtraction: $m^{r}(\mu) = \widetilde{m} + \frac{\widetilde{\beta}_{m}}{16\pi^{2}F^{2}} ,$ $g^{r}(\mu) = \widetilde{g} + \frac{\widetilde{\beta}_{g}}{16\pi^{2}F^{2}} ,$ $c_{i}^{r}(\mu) = \widetilde{c}_{i} + \frac{\widetilde{\beta}_{c_{i}}}{16\pi^{2}F^{2}} .$

Advantages:

- ${\tt I}{\tt S}{\tt S}$ Power counting is restored \longrightarrow predictive power
- Respect original analytic properties → spectroscopy (poles and cuts), chiral extrapolation, finite volume corrections
- Fast convergency behaviour in many cases, w.r.t. IR, HB, etc

Observables for physical processes

Differential cross sections

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{G_F^2 m_N^2}{8\pi E_\nu^2} \bigg[A(Q^2) \pm \frac{(s-u)}{m_N^2} B(Q^2) + \frac{(s-u)^2}{m_N^4} C(Q^2) \bigg]$$

Convenient scalar functions A, B and $C: (\eta = Q^2/4m_N^2 \& \text{No } G_P \text{ for NCE})$ $A(Q^2) \equiv 4\eta \Big[\mathcal{G}_A^2(Q^2) (1+\eta) + 4\eta \mathcal{F}_1(Q^2) \mathcal{F}_2(Q^2) - \Big(\mathcal{F}_1^2(Q^2) - \eta \mathcal{F}_2^2(Q^2) \Big) (1-\eta) \Big]$ $B(Q^2) \equiv 4\eta \ \mathcal{G}_A(Q^2) \Big(\mathcal{F}_1(Q^2) + \mathcal{F}_2(Q^2) \Big)$

$$C(Q^2) \equiv \frac{1}{4} \left[\mathcal{G}_A^2(Q^2) + \mathcal{F}_1^2(Q^2) + \eta \mathcal{F}_2^2(Q^2) \right]$$

Relationship between isospin and physical bases

$$\begin{split} \mathcal{F}_{i}(t) &= \cos 2\theta_{W}F_{i}^{V}(t)\frac{\mathcal{C}_{3}}{2} - 2\sin^{2}\theta_{W}F_{i}^{S}(t)\frac{\mathcal{C}_{0}}{2} , \quad i = 1, 2, \\ \mathcal{G}_{j}(t) &= G_{j}(t)\frac{\mathcal{C}_{3}}{2} , \quad j = A, P, \end{split}$$

physical process	\mathcal{C}_3	\mathcal{C}_0	physical process	\mathcal{C}_3	\mathcal{C}_0
$\nu + p \rightarrow \nu + p$	1	1	$\nu+n \rightarrow \nu+n$	-1	1
$\bar{\nu} + p \rightarrow \bar{\nu} + p$	1	1	$\bar{\nu} + n \rightarrow \bar{\nu} + n$	$^{-1}$	1
				DL. YAO. talk @	Guangzhou 12 / 2

Differential cross section

Proton channels

- Sizeable Pauli blocking effects
- Contribution of strangeness axial form factor?

Neutron channels

- No experimental data
- Large deviation from the NuWro results

Total cross section

Order by order

Our ChPT results deviate from the NuWro ones for neutron channels
 Large difference between NuWro and GENIE due to nuclear effects

III. Weak single pion production

[DLY, L. Alvarez-Ruso, A. N. Hiller Blin and M. J. Vicente Vacas, PRD2018] [DLY, L. Alvarez-Ruso and M. J. Vicente Vacas, PLB2019]

Weak single pion production

□ Oscillation experiments (e.g. T2K)

► survival probability of ν_{μ} : $P(\nu_{\mu}) = 1 - \sin^2 2\theta_{\mu\tau} \cdot \sin^2 \frac{\Delta m_{23}L}{E_{\nu}}$

□ Source of experimental uncertainties

CC 1*π*:

Solution \mathbb{C} CCQE-like events: misiden. of pion solution to be subtracted for a good E_{ν}

NC 1*π*:

series e-like background to $\nu_{\mu} \rightarrow \nu_{e}$ searches improved at T2K with a π^{0} rejection cut

D.-L. YAO, talk @ Guangzhou 15 / 25

Isobar Models

 ${\tt ISS}~\Delta$ and heavier resonances \rightarrow nucleon-to-resonance form factors:

[e.g., Llewellyn Smith, Phys. Rep. 3 (1972)] [Fogli and Nardulli, Nucl. Phys. B160 (1979)] [Rein and Sehgal, Ann. Phys. (1981)]

- Real form factor from quark models
- $\bullet\,$ Conserved vector current $\to\,$ related to electromagnetic ones extracted from electron scattering data
- PCAC \rightarrow off-diagonal Goldberger-Treiman (GT) relation for the axial couplings

Nonresonant mechanisms

[Fogli and Nardulli, Nucl. Phys. B160 (1979)] [Bijtebier, Nucl. Phys. B21 (1970)] [Alevizos et al., J. Phys. G 3(1977)]

□ Hernandez-Nieves-Valverde (HNV) Model

- Final state interaction: imposing Watson's theorem [Alvarez-Ruso et al., Phys. Rev. D 93 (2016)]
- Unphysicsal spin-1/2 components: adding new contact terms

[Hernandez and Nieves, Phys. Rev. D (2017)]

Other Models:

Dynamical model: coupled-channel Lippmann Schwinger equation

- Fulfilling Watson's theorem
- PCAC \rightarrow partially constrain the axial current in terms of πN scattering amplitude fitted to data [Nakamura, Kamano and Sato, Phys. Rev. D (2015)]
- ${\it I}{\it S}{\it S}$ Chiral effective model with $\pi,$ N, Δ together with $\sigma,$ $\rho,$ ω
 - Power counting only for tree diagrams

[Serot and Zhang, Phys. Rev. C (2012)]

```
🕸 etc.
```

Low energy regime:

Chiral symmetry + Power counting + Perturbative Unitarity

□ Baryon Chiral Perturbation Theory (BChPT)

Low-Energy theorems (axial only) at threshold using heavy baryon formalism

[Bernard, Kaiser and Meißner, Phys. Lett. B (1994)]

 ${\it \blacksquare}$ Our work: One-loop analyses in relativistic BChPT with explicit $\Delta {\sf s}$

[DLY, Alvarez-Ruso, Hiller-Blin and Vicent-Vacas, Phys. Rev. D (2018)]

[DLY, Alvarez-Ruso and Vicent-Vacas, Phys. Lett. B (2019)]

Leptonic and Hadronic parts

Physical channels (3 for CC & 4 for NC)

□ Amplitude structure:

- ${}^{\scriptstyle \rm I\!S\!S}$ One-boson approximation and $k^2 \ll M_B^2$
- Solution L_{ν} is well-known; Hadronic part H_{μ} needs to be investigated.

Convenient isospin decomposition

□ Isospin even (+), isospin odd (-), isoscalar (0)

$$\langle \pi^b N' | J^a_\mu(0) | N \rangle = \chi^\dagger_f \left[\delta^{ba} H^+_\mu + i \epsilon^{bac} \tau^c H^- + \tau^b H^0_\mu \right] \chi_i$$

□ The physical amplitudes constructed from the isospin amplitudes

$$H_{\mu}$$
(physical process) = $a_{+}H_{\mu}^{+} + a_{-}H_{\mu}^{-} + a_{0}H_{\mu}^{0}$

	Physical Process	a_+	a_{-}	a_0
	$Z^0 p o p \pi^0$	1	0	1
NC	$Z^0 n \rightarrow n \pi^0$	1	0	$^{-1}$
NC	$Z^0 n \rightarrow p \pi^-$	0	$-\sqrt{2}$	$\sqrt{2}$
	$Z^0 p \rightarrow n \pi^+$	0	$\sqrt{2}$	$\sqrt{2}$
	$W^+p \rightarrow p\pi^+ / W^-n \rightarrow n\pi^-$	1	$^{-1}$	0
CC	$W^+n \rightarrow n\pi^+ / W^-p \rightarrow p\pi^-$	1	1	0
	$W^+n \rightarrow p\pi^0 / W^-p \rightarrow n\pi^0$	0	$\sqrt{2}$	0

□ The CC and NC amplitudes are related to each other For CC, $H^{\pm}_{\mu} = \sqrt{2} \cos \theta_C (V^{\pm}_{\mu} - A^{\pm}_{\mu})$, $H^0_{\mu} = 0$. For NC, $H^{\pm}_{\mu} = (1 - 2\sin^2 \theta_W) V^{\pm}_{\mu} - A^{\pm}_{\mu}$, $H^0_{\mu} = (-2\sin^2 \theta_W) V^0_{\mu}$

D.-L. YAO, talk @ Guangzhou 19 / 25

The hadronic amplitude

Tree diagrams up through $O(p^3)$:

 \Box All possible loop diagrams at $O(p^3)$:

89 diagrams & wave function renormalization & EOMS

Necessity of the Δ resonance

\square Δ is strongly coupled to the final πN system

- \blacksquare BR $(\Delta \to \pi N) \simeq 99.4\%$
- Solutions to πN threshold: $\Delta = m_\Delta m_N \sim 300 \text{ MeV}$
- Strategy: the δ-counting

[Pascalutsa and Phillips, Phys. Rev. C67 (2012)]

- is hierachy of scales: $M_{\pi} \sim p \ll \Delta \ll \Lambda \sim 4\pi F_{\pi}$
- server expanding parameter: $\delta = \frac{\Delta}{\Lambda} \sim \frac{M_{\pi}}{\Delta} \sim \frac{p}{\Delta} \longrightarrow \frac{1}{p m_{\Delta}} = \frac{1}{p m_N \Delta} \sim p^{-\frac{1}{2}}$

Counting rule:

chiral order
$$D = 4L + \sum_k kV^{(k)} - 2I_\pi - I_N - \frac{1}{2}I_\Delta$$

 ${f ar s}$ only trees of $O(p^{3/2})$ and $O(p^{5/2})$

in No loop diagrams with explicit Δ up through $O(p^3)$

The width effect

$$\frac{1}{m_{\Delta}^2 - s_{\Delta}} \to \frac{1}{m_{\Delta}^2 - im_{\Delta}\Gamma_{\Delta}(s_{\Delta}) - s_{\Delta}}$$

Energy dependent width $\Gamma_{\Delta}(s_{\Delta})$ calculated in the same scheme

[Gegelia et al, Phys. Lett. B(2016)]

D.-L. YAO, talk @ Guangzhou 21 / 25

Cross sections for ${\bf CC}1\pi$

□ Fairly good agreement with the ANL data for most of the channels except for $\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$

D.-L. YAO, talk @ Guangzhou 22 / 25

Cross sections for $\mathbf{CC}1\pi$

Order by order

- **Quite significant contribution when stepping from** $O(p^2)$ and $O(p^3)$
- Next-order effects could still be relevant (especially loops that πN can be put on-shell)

Cross sections for $NC1\pi$

- The O(p³) ChPT calculation produces considerably larger cross sections with respect to the HNV model in all reaction channels.
- Nuwro and GIENE results agree with the ChPT ones with Δ contribution.
- Non-resonant contribution is sizeable, not accounted by Nuwro and GIENE.

D.-L. YAO, talk @ Guangzhou 24 / 25

IV. Summary and outlook

- □ Systematically study the NCE scattering and weak single pion production off the nucleon for the first time within covariant BChPT up to $O(p^3)$.
 - NCE: The X sections are useful for a precise determination of the strangeness axial vector form factor in future
 - Solution channels $\mathbb{CC}_{1\pi}$ & $\mathbb{NC}_{1\pi}$: The Δ contributes significantly to all production channels
 - NC1π: Non-resonant contribution is sizeable which is not implemented in events generators like NuWro and GIENE

Provide a well-founded low energy benchmark for phenomenological models aimed at the description of weak pion production in the broad kinematic range of interest for current and future neutrino-oscillation experiments.

Future application and perspective

- Applied to study various low-energy theorems
- Neutrino-nucleus scattering
- Implement ChPT results in events generator?

Thank you very much for your attention!

Backup

Valid energy region of BChPT

□ Valid energy region of BChPT

 ${\it I}$ Square of mom. transfer $Q^2 \leq 0.2~{\rm GeV}^2 \longrightarrow$ neutrino energy $E_{\nu} \leq 0.28~{\rm GeV}$

$$\sigma = \int_{-1}^{+1} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} \frac{\mathrm{d}Q^2}{\mathrm{d}x} \mathrm{d}x}, \quad Q^2 = \frac{2m_N E_\nu^2}{2E_\nu + m_N} (1-x), \quad x = \cos\theta \ , \quad \theta \in [0,\pi]$$

Flux X-section

Experimental data

CC1*π*

D.-L. YAO, talk @ Guangzhou 25 / 25

Experimental data

Electroweak interaction in BChPT

□ Covariant BChPT in SU(2) case.

🖙 Nucleonic Lagrangian

[Fettes et al Ann. Phys. (2000)]

Purely mesonic Lagrangian [Gasser and Leutwyler, Ann. Phys. (1984)] [Gasser et al., Nucl. Phys. B307 (1988)]

$$\mathcal{L}_{\pi} = \frac{F^2}{4} \operatorname{Tr}[\Delta_{\mu} U (\Delta^{\mu} U)^{\dagger} + \chi U^{\dagger} + U \chi^{\dagger}] + \sum_{j=3,4,6} \ell_j \mathcal{O}_j^{(4)}$$

Electro-weak interactions enter through external fields

[c.f. Scherer and Schindler, 2011, Springer]

 \bowtie Charged weak bosons W^{\pm} :

$$r_{\mu} = 0, \quad l_{\mu} = -\frac{g}{\sqrt{2}} (V_{ud} W^{+}_{\mu} \tau_{+} + h.c.)$$

 \bowtie Neural weak boson Z^0 :

$$\begin{split} r_{\mu} &= e \tan(\theta_W) Z_{\mu}^0 \frac{\tau_3}{2}, \quad l_{\mu} = -\frac{g}{\cos(\theta_W)} Z_{\mu}^0 \frac{\tau^3}{2} + e \tan(\theta_W) Z_{\mu} \frac{\tau_3}{2}, \\ v_{\mu}^{(s)} &= \frac{e \tan(\theta_W)}{2} Z_{\mu}^0 \end{split}$$

Numerical settings

 \Box Energies considered for $E_{\nu} \in [E_{\nu,th}, E_{\nu,\max} \equiv E_{\nu,th} + M_{\pi}]$

- Solution E.g., $E_{\nu,\max} = 415$ MeV for CC; $E_{\nu,\max} = 289$ MeV for NC
- \blacksquare Well below the Δ peak $\rightarrow \delta$ -counting is valid

Data for neutrino-induced single pion production off nucleons are very rare
 Values of the leading order constants

F_{π}	M_{π}	m_N	m_{Δ}	g_A	h_A
92.21	138.04	938.9	1232 MeV	1.27	1.43 ± 0.02

Low energy constants beyond LO

Most of the LECs (16 out of 23) are previously determined from other processes or observables

	LEC	Value	Source	
$\mathcal{L}_{\pi\pi}^{(4)}$	$\bar{\ell}_6$	16.5 ± 1.1	$\langle r^2 angle_\pi$ [Gasser, Leutwyler 1984]	
	\tilde{c}_1	-1.00 ± 0.04		
	\tilde{c}_2	1.01 ± 0.04	πN contains (4) and (5) and (5)	
$\mathcal{L}_{-N}^{(2)}$	\tilde{c}_3	-3.04 ± 0.02	πIV SCattering [Alarcon et al. 2013 & Chen et al. 2013]	
$\pi I \mathbf{v}$	\tilde{c}_4	2.02 ± 0.01		
	\tilde{c}_6	1.35 ± 0.04	u and u to the second pocesses	
	$ ilde{c}_7$	-2.68 ± 0.08	μ_p and μ_n [Bauer et al. 2012 & PDG2016]	
	d_{1+2}^{r}	0.15 ± 0.20		
	d_3^r	-0.23 ± 0.27		
$c^{(3)}$	d_5^r	0.47 ± 0.07	πN scattering [Alarcon et al. 2013 & Chen et al. 2013]	
$\mathcal{L}_{\pi N}$	d_{14-15}^r	-0.50 ± 0.50		
	d_{18}^{r}	-0.20 ± 0.80		
	\tilde{d}_6^r	-0.70	/m ² \ IT 2014]	
	d_7^r	-0.47	VE/N [Fuchs et al. 2014]	
	d_{22}^{r}	0.96 ± 0.03	$\langle r_A^2 angle_N$ [Yao et al. 2017]	
$\mathcal{L}^{(2)}_{\pi N\Delta}$	b_1	$(4.98 \pm 0.27)/m_N$	$\Gamma^{ m em}_{\Delta}$ [Bernard et al 2012]	
T I			and a state of the state	

lacksquare The remaining unknown LECs ightarrow set to natural size

 $d_j^r = 0.0 \pm 1.0 \text{ GeV}^{-2}$, $j \in \{1, 8, 9, 14, 20, 21, 23\}$

D.-L. YAO, talk @ Guangzhou 25 / 25

BChPT & PCB issue

Covariant ChPT including matter fields (Baryons, D/B mesons, Ξ_{cc})

 \blacksquare Dimensional Regularization (DR) with standard $\overline{\mathrm{MS}}$ -1 subtraction

A systematic power counting rule is lost due to the non-zero mass of matter fields in the chiral limit

Solution I: HB

Essence: The full integral can be separated into Infared Singular and Regular parts.

□ Heavy baryon formalism (HB)

[Jenkins and Manohar, PLB255' 91]

A simultaneous expansion in external momenta and $1/m_B$

Non-covariant and slowly convergent in the threshold region. [N.Fettes,Ulf-G.Meissner and S.Steininger, NPA' 98, M.Mojzis, Eur.Phys.J.C2' 98]

Even divergent in the sub-threshold region (e.g. scalar form factor).

[V.Bernard,N.Kaiser and Ulf-G.Meissner,Int.J.Mod.Phys.E4' 95, T.Becher and H.Leutwyler,Eur.Phys.J.C9' 99]

Infrared Regularization (IR)
 Extended-on-mass-shell scheme (EOMS)

Solution II: IR

Essence: The full integral can be separated into Infared Singular and Regular parts.

Heavy baryon formalism (HB)
 Infrared Regularization (IR)

[Jenkins and Manohar, PLB255' 91]

[T.Becher and H.Leutwyler, Eur. Phys. J.C9' 99]

The whole series of the regular part in the full integral are dropped.

- Scale-dependence: amplitude and observables. [T.Becher and H.Leutwyler, JHEP0106' 01]
- Unphysical cuts(u=0). [J.M.Alarcon, J.Martin Camalich, J.A.Oller and L.Alvarez-Ruso, PRC83' 11]

 ${\tt I}$ Bad predictions: e.g., huge Goldberger-Treiman relation violation (20-30%).

[J.M.Alarcon, J.Martin Camalich, J.A.Oller and L.Alvarez-Ruso, PRC83' 11]

Extended-on-mass-shell scheme (EOMS)

Solution III: EOMS

Essence: The full integral can be separated into Infared Singular and Regular parts.

- Heavy baryon formalism (HB)
- □ Infrared Regularization (IR)
- Extended-on-mass-shell scheme (EOMS)

[Jenkins and Manohar, PLB255' 91]

[T.Becher and H.Leutwyler, Eur. Phys. J.C9' 99]

[T.Fuchs, J.Gegelia, G.Japaridze and S.Scherer, PRD68' 03]

