Motivation 0000

BLFQ 00000000 LFHQCD 000 Results 00000 Conclusion 000

STRUCTURE OF LIGHTEST NUCLEI IN THE VISIBLE UNIVERSE ON THE LIGHT FRONT

Satvir Kaur

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

Jiatong Wu, Siqi Xu, Chandan Mondal, Xingbo Zhao, and James P. Vary

(BLFQ Collaboration)

November 27, 2024

Motivation

Basis Light-Front Quantization (BLFQ)

Extended Light-Front Holographic QCD approach

EM FFs and Structure Functions

Conclusion

FERMILAB-PUB-22-381-V

- Universe's lightest nuclei
- Deuteron possesses tensor structure:
 - Absent for spin-0 or 1/2 systems
 - Gluon Transversity

PR12-13-011

- Proposals to study the structure of deuteron: JLab (approved), Fermilab (proposal in 2022), EICs...
- Largely unexplored field yet : can open a new field of spin physics

The SpinQuest Collaboration^a A Letter of Intent to Jefferson Lab PAC 42 Search for Exotic Gluonic States in the Nucleus

The Transverse Structure of the Deuteron with Drell-Yan

The Deuteron Tensor Structure Function b₁ A Proposal to Jefferson Lab PAC-40 (Update to PR12-11-110)

FERMILAB-PUB-22-381-V

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

Motivation	BLFQ	LFHQCD	Results	Conclusion
0000	0000000	000	00000	000

Richness of Deuteron's Spin Structure

Quark	$U(\gamma^{+})$		$L(\gamma^{+}\gamma_{5})$		${\bf T}(i\sigma^{i*}\gamma_5/\sigma^{i*})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					$[h_1^{\perp}]$
L			g_{1L}		$[h_{1\mathrm{L}}^{\perp}]$	
т		$f_{1\mathrm{T}}^{\perp}$	g 1T		$[h_1], [h_{1T}^{\perp}]$	
LL	$f_{\rm 1LL}$					$[\boldsymbol{h}_{1LL}^{\perp}]$
LT	f _{ilt}			g _{1LT}		$[h_{1LT}], [h_{1LT}^{\perp}]$
TT	$f_{\rm 1TT}$			g_{1TT}		$[h_{1\mathrm{TT}}], [h_{1\mathrm{TT}}^{\perp}]$

Twist-2 TMDs.

Kumano et al. 2406.01180

Quark	$U(\gamma^*)$		$L(\gamma^+\gamma_5)$		T $(i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					
L			$g_{1L}(g_1)$			
т					[<i>h</i> ₁]	
LL	$f_{1LL}(b_1)$					
LT						*1 [<i>h</i> _{1LT}]
TT						

Twist-2 PDFs.

 $\begin{array}{c} {\rm Motivation} \\ {\rm OO} {\bullet} {\rm O} \end{array}$

BLFQ 00000000 LFHQCE 000 Results 00000

Recent Interest for Deuteron's GFFs

Deuteron gravitational form factors: Exchange currents

Phys. Rev. C 110, 014312 - Published 8 July, 2024

Gravitational form factors of light nuclei: Impulse approximation

Fangcheng He 💿 and Ismail Zahed

Phys. Rev. C 109, 045209 - Published 22 April, 2024

Gravitational form factors of nuclei in the Skyrme model

Alberto García Martín-Caro (b, Miguel Huidobro (b, and Yoshitaka Hatta (b)

Show more

Phys. Rev. D 108, 034014 - Published 14 August, 2023

BLFQ 00000000 LFHQCE 000 Results

Conclusion 000

How do we visualize the deuteron?

- A six-quark system
- Direct access to the Parton level
- Ability to achieve both quark and gluon distributions
- Hidden color

- A two-nucleon system
- Two-step approach
- Simple modeling

Light Front Holographic QCD

Basis Light-Front Quantization (BLFQ)

- Non-perturbative approach based on the Hamiltonian formalism : $P^+P^- |\Psi\rangle = M^2 |\Psi\rangle$
 - To solve relativistic many-body bound state problems.
 - Successfully implemented to investigate the structures of various baryons and mesons.
 - Motivation: To extend the approach to investigate light nuclei.
- P^+ : longitudinal momentum of the targeted nuclei P^- : LF Hamiltonian

Fock state expansion of the deuteron state

 $\left|\Psi\right\rangle_{D} = \psi_{6q} \left|qqq \ qqq\right\rangle + \psi_{6q+1g} \left|qqq \ qqq \ g\right\rangle + \psi_{6q+q\bar{q}} \left|qqq \ qqq \ q\bar{q}\right\rangle + \dots$

• ψ_{\dots} : LFWFs associated with the Fock components $|...\rangle$.

ation

¹J.P.Vary, H. Honkanen, J. Li, P. Maris, S.J.Brodsky, A. Harindranath, G.F. de Teramond, PRC 81, 035205 (2010).

Basis Light-Front Quantization (BLFQ)

- Non-perturbative approach based on the Hamiltonian formalism : $P^+P^- |\Psi\rangle = M^2 |\Psi\rangle$
 - To solve relativistic many-body bound state problems.
 - Successfully implemented to investigate the structures of various baryons and mesons.
 - Motivation: To extend the approach to investigate light nuclei.
- P^+ : longitudinal momentum of the targeted nuclei P^- : LF Hamiltonian

Fock state expansion of the deuteron state

$$|\Psi\rangle_D = \psi_{6q} |qqq \ qqq \rangle + \psi_{6q+1g} |qqq \ qqq \ g\rangle + \psi_{6q+q\bar{q}} |qqq \ qqq \ q\bar{q}\rangle + \dots$$

• ψ_{\dots} : LFWFs associated with the Fock components $|\dots\rangle$.

BLFQ •0000000 Results 00000

¹J.P.Vary, H. Honkanen, J. Li, P. Maris, S.J.Brodsky, A. Harindranath, G.F. de Teramond, PRC 81, 035205 (2010).

- Parton's basis state is identified by $|\alpha_i\rangle = |k_i, n_i, m_i, \lambda_i\rangle$
- Many-body basis states are identified as the direct product of the Fock-particle basis states $|\alpha\rangle = \otimes |\alpha_i\rangle$.

¹J.P.Vary, H. Honkanen, J. Li, P. Maris, S.J.Brodsky, A. Harindranath, G.F. de Téramond, PRC 81, 035205 (2010).

¹S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299-486 (1998)

Motivation	BLFQ	LFHQCD	Results	Conclusion
0000	0000000	000	00000	000

Parameters and Decomposition of Spin States

m_u	m_d	b	b_inst	g
1.0 GeV	0.95 GeV	0.32 GeV	5 GeV	3.9

 $N_{max} = 8; K = 7$

- Number of Color singlet states in $|qqq qqq\rangle$: 5
- Number of Color singlet states in $|qqq \ qqq \ g\rangle$: 16

0.0

0.5

1.0

Q²(GeV²)

1.5

• Capability to achieve the gluon transversity.

Motivation	BLFQ	LFHQCD	Results	Conclusion
0000	0000000	•00	00000	000

Light-Front Schrödinger Wave Equation

• Light-front wave equation:

$$\left(\frac{m_p^2}{z} + \frac{m_n^2}{1-z} - \frac{\mathrm{d}^2}{\mathrm{d}\zeta^2} - \frac{1-4L^2}{4\zeta^2} + U_{\mathrm{eff}}\right)\Psi(z,\zeta) = M_D^2\Psi(z,\zeta)$$

• Light-front wavefunction:

$$\Psi(z,\zeta,\varphi) = \frac{\phi(\zeta)}{\sqrt{2\pi\zeta}} e^{iL\varphi} X(z)$$

•
$$\zeta = \sqrt{z(1-z)}\mathbf{b}_{\perp}$$
, $X(z) = \sqrt{z(1-z)}\chi(z)$

$$\begin{split} \left(-\frac{\mathrm{d}^2}{\mathrm{d}\zeta^2} - \frac{1-4L^2}{4\zeta^2} + U_{\perp}(\zeta)\right)\phi(\zeta) &= M_{\perp D}^2\phi(\zeta)\\ \left(\frac{m_p^2}{z} + \frac{m_n^2}{1-z} + U_{\parallel}(z)\right)\chi(z) &= M_{\parallel D}^2\chi(z) \end{split}$$

• Assumption: $U_{\text{eff}} = U_{\perp}(\zeta) + U_{\parallel}(z)$; Mass: $M_D^2 = M_{\perp D}^2 + M_{\parallel D}^2$

• LFWF: $\Psi(z,\zeta) = \sqrt{z(1-z)}\chi(z) \phi(\zeta)$

¹S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Phys. Rept. 584, 1 (2015)

Motivation	BLFQ	LFHQCD	Results	Conclusion
0000	0000000	000	00000	000

Light-Front Holographic QCD: contains transverse dynamics

- Unique confining potential ¹: $U_{\perp}^{\text{LFH}}(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$
- Meson mass spectra:

$$M^2_{\perp D}(n_{\perp}, J, L) = 4\kappa^2 \left(n_{\perp} + \frac{J+L}{2}\right) \qquad ; \qquad J = L+S$$

• Transverse part of the wave function:

$$\phi_{n_{\perp}L}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n_{\perp}!}{(n_{\perp}+L)!}} \zeta^{1/2+L} \exp\left(\frac{-\kappa^2 \zeta^2}{2}\right) \, L^L_{n_{\perp}}(\kappa^2 \zeta^2)$$

• Transverse part of the deuteron LFWF in momentum space:

$$\Psi(z,k_{\perp}^2) = \frac{1}{\sqrt{z(1-z)}} \exp\left(-\frac{k_{\perp}^2}{2\kappa^2 z(1-z)}\right)$$

¹S.J. Brodsky, G.F. de Téramond, H.G. Dosh, J. Erlich, Physics Reports 584, 1 (2015)

 Motivation
 BLFQ
 LFHQCD
 Results
 Conclusion

 0000
 00000000
 000
 0000
 000

The 't Hooft Equation: contains longitudinal dynamics

• Derived from the (1 + 1)-dim QCD Lagrangian in the large N_c limit ¹:

$$\left(\frac{m_p^2}{z} + \frac{m_n^2}{1-z}\right)\chi(z) + \frac{g^2}{\pi}\mathcal{P}\int\mathrm{d}y\frac{\chi(z) - \chi(Z)}{(z-Z)^2} = M_{\parallel D}^2\chi(z)$$

• Extend to light nuclei

 $m_n = m_p = 0.80 \pm 0.08 \text{ GeV}; \ \kappa = 0.13 \pm 0.013 \text{ GeV}; \ g = 0.5 \pm 0.05 \text{ GeV}$

$$M_D = \sqrt{M_{\perp D}^2 + M_{\parallel D}^2} = 1.80 \pm 0.18 \text{ GeV}$$

¹G. 't Hooft, Nucl. Phys. B 75 (1974) 461-470

²Phys. Lett. B 823, 136754(2021); Phys. Rev. D 104, 074013 (2021)

- ³Phys. Lett. B 836, 137628 (2023)
- ⁴Phys. Rev. D 109, 094017 (2024)

Motivation	BLFQ	LFHQCD	Results	Conclusion
0000	0000000	000	0000	000

Nucleon's Longitudinal Momentum-dependent Distribution Functions

• Nucleon longitudinal momentum distribution functions:

$$\begin{split} f_{1}^{N}(z) &= \frac{1}{6} \left[P_{\uparrow}^{1}(z) + P_{\uparrow}^{-1}(z) + P_{\uparrow}^{0}(z) \right] \\ g_{1L}^{N}(z) &= \frac{1}{4} \left[P_{\uparrow}^{1}(z) - P_{\downarrow}^{1}(z) \right] \\ f_{1LLL}^{N}(z) &= \frac{1}{4} \left[2P_{\uparrow}^{0}(z) - \left(P_{\uparrow}^{1}(z) + P_{\uparrow}^{-1}(z) \right) \right] \\ \end{split}$$
where $P_{\uparrow}^{\Lambda}(z) = \int d^{2}\mathbf{k}_{\perp} \sum_{\bar{h}} \left| \Psi_{\uparrow\bar{h}}^{\Lambda}(z,\mathbf{k}_{\perp}) \right|^{2};$

• Qualitative consistency with other spin-1 systems (like ρ -meson).

Structure Functions

- Structure functions: $x \sum_{f} e_{f}^{2} \{ PDF \}^{D}(x, Q^{2})$
 - PDF of deuteron at the level of its valence quarks

$$\{\mathrm{PDF}\}^{D}(x,Q^{2}) = \frac{1}{2} \sum_{\mathrm{nucleon}} \int_{x}^{1} \frac{\mathrm{d}y}{y} \mathcal{F}^{\mathrm{nucleon}}(y) \otimes \{\mathrm{PDF}\}^{f}\left(\frac{x}{y},Q^{2}\right)$$

where $\mathcal{F}^{\text{nucleon}}$: nucleon longitudinal momentum distribution • {PDF}^f @ $Q^2 = 5 \text{ GeV}^2$ are obtained from NNPDF global fits.

PHYSICAL REVIEW C

VOLUME 44, NUMBER 3

SEPTEMBER 1991

Convenient parametrization for deep inelastic structure functions of the deuteron

Hafsa Khan and Pervez Hoodbhoy Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan (Received 27 December 1990)

- Discrepancy at low-x: absence of the non-nucleonic contributions.
- Remarkable description of the data.

• $\int_{0.02}^{0.85} \mathrm{d}x \, b_1^D(x) = 0.41 \times 10^{-2}$; HERMES: $(0.35 \pm 0.10_{\mathrm{stat}} \pm 0.18_{\mathrm{sys}}) \times 10^{-2}$

Kumano(2024): 0.0058 ± 0.0047 [EPJ A 60 (2024) 10, 205]

¹A. Airapetian, et al. (HERMES Collaboration), PRL 95, 242001 (2005)

- Deuteron, a lightest nuclei with spin-1, contains enriched information at the level of its partons.
- Showed some very preliminary results on deuteron structure functions from LF Hamiltonian approach.
 - Qualitatively consistent results.
 - able to achieve gluon transversity distribution.
 - able to study the color structure of deuteron.
- Studied the deuteron structure functions using LF holographic QCD approach alongwith the 't Hooft Equation.
 - Good agreement with the experimental data.

¹S.J. Brodsky, arXiv-hep:1611.07194