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Overview

• Developed a new and rigorous light-front formalism for the unpolarized Deep Inelastic 
Scattering (DIS) and applied to the : sizable European Muon Collaboration (EMC) effect 
predicted [1]


• The formalism is extended to any nucleus and applied to the  and  [2]


•  is a tightly bound nucleus  Challenging test to our approach 

• The formalism is generalized for the polarized DIS [3] for the 


•  can be considered as an effective polarized neutron target  Extraction of the 
neutron spin structure is possible only through nuclear data


• Experiments involving polarized beams of  planned at future facilities such as EICs. 
Proposal for positron beams at JLab

3He

4He 3H

4He ⇒
3He

3He ⇒

3He

[2] F.F, E.Pace, M.Rinaldi, G.Salmè, S.Scopetta and M.Viviani, Phys.Lett.B 851 (2024) 138587

[1] E.Pace, M.Rinaldi, G.Salmè and S.Scopetta, Phys. Lett. B 839 (2023) 127810

[3] E.Proietti, F.F, E.Pace, M.Rinaldi, G.Salmè and  S.Scopetta, Phys.Rev.C 110 (2024) 3, L031303

[A.Accardi et al., Eur.Phys.J.A 57 (2021) 8, 261]
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The EMC effect

More than 40 years ago, the European Muon Collaboration (EMC) measured (in DIS processes)

Expected result: R(x) = 1

Result:


Aubert et al. Phys.Lett. B123 (1983) 275

Naive parton model interpretation:


“Valence quarks, in the bound nucleon, are in 
average slower that in the free nucleon”

Is the bound proton bigger than the free one??
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The EMC effect

We remind that for DIS off nuclei:

x ≤ 0.3 “Shadowing region”: coherence effects, the photon interacts with partons 
belonging to different nucleons

0.2 ≤ x ≤ 0.8 “EMC (binding) region”: mainly valence

quarks involved

0.8 ≤ x ≤ 1 “Fermi motion region” 
 

main features: universal behavior independent on ; weakly dependent on A; 
Scales with the density ρ → global property? 

Or due to SRC  local property?

Q2

→

Explanation (exotic) advocated: confinement radius bigger for bound nucleons, 
quarks in bags with 6, 9,..., 3A 

quark, pion cloud effects... Alone or mixed with conventional ones...
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The EMC effect

Status of “conventional” calculations for light nuclei:

NR Calculations: qualitative agreement but no fulfillment of both particle and momentum sum 
rules… Not under control

Our approach is aimed to include only nucleonic dof through conventional nuclear physics in a 
Poincaré-covariant approach that preserves the macroscopic locality. The only way to fulfill sum 
rules while using realistic NR nuclear potentials is to embed relativistic effects

The lack of the Poincarè covariance and macroscopic locality generates biases for the study of 
genuine QCD effects (nucleon swelling, exotic quark configurations …). We provide a reliable 
baseline for the calculation of the nuclear SFs where only the well known nuclear part is considered 
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Need for a relativistic treatment

Why do we need a relativistic treatment ? 

General answer: to develop an advanced scheme, appropriate for the kinematics of JLAB12 and EIC

• The Standard Model of Few-Nucleon Systems, with nucleon and meson degrees of freedom 
within a non relativistic (NR) framework, has achieved high sophistication  (e.g. the NR 3He and 
3H Spectral Functions * )


• Covariance wrt the Poincaré Group, needed for nucleons at large 4-momenta and pointing to 
high precision measurements

Our definitely preferred framework for embedding the successful NR phenomenology: 

Light-front Relativistic Hamiltonian Dynamics (LFRHD, fixed dof) + Bakamjian-Thomas (BT) 
construction of the Poincaré generators for an interacting theory.

* Kievsky, Pace, Salmè and Viviani PRC 56, 64 (1997)
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The relativistic Hamiltonian dynamics framework

In RHD+BT, one can address both Poincaré covariance and macroscopic locality, general 
principles to be implemented in presence of interaction:

Macroscopic locality (= cluster separability (relevant in nuclear physics)): i.e. observables associated to 
different space-time regions must commute in the limit of large space like separation (i.e. causally 
disconnected). In this way, when a system is separated into disjoint subsystems by a sufficiently large 
space like separation, then the subsystems behave as independent systems* 

This requires a careful choice of the intrinsic relativistic coordinates

Poincaré covariance  The 10 generators,  displacements and Lorentz 
transformation, have to fulfill:  


                                    

→ Pμ → 4D Mνμ →

[Pμ, Pν] = 0; [Mμν, Pρ] = − i(gμρPν − gνρPμ)
[Mμν, Mρσ] = − i(gμρMνσ + gνσMμρ − gμσMνρ − gνσMμσ)

*B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479
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Advantages of the Light-Front framework

The Light-Front framework has several advantages:

• 7 Kinematical generators:  i) 3 LF boosts (in instant form they are dynamical!) ;                                                        
ii)  ;  iii) Rotation around the z-axis


• The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in 
the NR case


• meaningful Fock expansion, once massless constituents are absent


• The infinite-monentum frame (IMF) description of DIS is easily included

P̃ = (P+ = P0 + P3, P⊥)

P+ ≥ 0 →

Drawback: the transverse LF-rotations are dynamical! 

But within the Bakamjian-Thomas (BT) construction of the generators in an interacting theory, one can 
construct an intrinsic angular momentum fully kinematical
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The Bakamjian-Thomas construction

Bakamjian and Thomas (PR 92 (1953) 1300) proposed an explicit construction of 10 Poincaré generators 
in presence of interactions. The key ingredient is the mass operator:

The mass operator is given by the sum of M0 with an interaction V:  M0 + V. The interaction V must 
commute with all the kinematical generators and with the non-interacting angular momentum, as in 
the NR case 

i) Only the mass operator  contains the interaction


ii) It generates the dependence of the 3 dynamical generators (  and LF transverse rotations) upon 
the interaction


iii) The eigenvalue equation is formally equivalent to the Schrödinger equation

M

P−

M2 |ψ > = s |ψ >

Light-Cone coordinates: , ,  a = (a−, ã) a± = a0 ± az ã = (a+, a⊥)
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The BT construction for a nuclear system

2 and 3 body forces operator

Momenta in the intrinsic reference frame 
A

∑
i=1

ki = 0

The commutation rules impose to  invariance for translations and rotations as well as 
independence on the total momentum, as it occurs for 

V
VNR

One can assume  MBT[1,2,…, A] ∼ MNR

Therefore what has been learned till now about the nuclear interaction, within a non-relativistic 
framework, can be re-used in a Poincaré covariant framework.

For a generic nucleus A, the mass operator is 
                                                                    

Where the free mass operator of the system is: 

MBT[1,2,3,…, A] = M0[1,2,3,…, A]+V(k2; k ⋅ ki; kj ⋅ ki)

M0[1,2,3,…, A] =
A

∑
i

m2 + k2
i
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Reference frames
For a correct description of the structure functions, so that the macro-locality is implemented, it is 
crucial to distinguish between different frames, moving with respect to each other:

• The Lab frame, where 


• The intrinsic LF frame of the whole system, , where  with                    

 and  


• The intrinsic LF frame of the cluster  where 
 with                                                 

 and 

P̃ = (MBT, 0⊥)

[1,2,…, A] P̃ = (M0[1,2,…, A], 0⊥)

k+
i = ξiM0[1,2,…, A] M0[1,2,…, A] =

A

∑
i=1

m2 + k2
i

[1; 2,3,…, (A − 1)]
P̃ = (ℳ0[1; 2,3,…, A − 1]), 0⊥)
k+ = ξℳ0[1; 2,3,…, A − 1] ℳ0[1; 2,3,…, A − 1] = m2 + κ2 + M2

s + κ2

While pLAB
⊥ = k1⊥ = κ⊥

 is the mass of the fully 
interacting spectator system
Ms = (A − 1)m + ϵ
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LF spectral function

Since we use an impulse approximation assumption, we have to define the spin-dependent LF 
spectral function Pτ

σ′￼σ(κ̃, ϵ, S, M)

 is the tensor product of the plane wave of the struck nucleon [1] and the 
state of the fully interacting spectator system  in the intrinsic reference frame of the 
cluster  when the spectator system has energy . It fulfills the macrolocality*

| tT; α, ϵ; JJz; τσ′￼, κ̃ >LF
[2,…, A − 1]

[1; 2,3,…, A − 1] ϵ

 
PN

σ′￼σ(κ̃, ϵ, S, M) = ∑
JJz

∑
TTz

ρ(ϵ)LF < tT; α, ϵ; JJz; τσ′￼, κ̃ |ΨJM; S, TATAz > < ΨJM; S, TATAz | LFtT; α, ϵ; JJz; τσ, κ̃ >LF

 is the eigenstate of  in the intrinsic frame of the system |ΨJM; S, TATAz >LF MBT[1,…, A] ∼ MNR

[1,2,…, A]

The LF spectral function contains the determinant of the Jacobian of the transformation between 
the intrinsic frames  and , connected each other by a LF boost[1; 2,3,…, A − 1] [1,2,…, A]

*B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479
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LF spectral function

Then we can approximate the IF overlap into a NR overlap by using the NR wave function for the  
nucleus, thanks to the BT construction: 

< tT; α, ϵ; JJz; τσ′￼c, κ |ΨJM; S, TATAz >IF ∼ < tT; α, ϵ; JJz; τσ′￼c, κ |ΨJM; S, TATAz >NR

Poincarè covariance preserved but using the successful NR phenomenology

We can express the LF overlap in terms of the IF overlap using Melosh rotations:

< tT; α, ϵ; JJz; τσ′￼, κ̃ |ΨJM; S, TATAz >LF → < tT; α, ϵ; JJz; τσ′￼c, κ |ΨJM; S, TATAz >IF

We used wave functions of  calculated through 3 different potentials: Av18+UIX* and 
2 versions of the Norfolk  interactions NVIa+3N** and NVIb+3N**

2H,3 H,3 He,4 He
χEFT

*R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Phys. Rev. C 51 (1995) 38–51; R. B. Wiringa et al., Phys. Rev. Lett. 
74 (1995) 4396–4399

**M.Viviani et al., Phys. Rev. C 107 (1) (2023) 014314; M. Piarulli et al.,Phys. Rev. Lett. 120 (5) (2018) 052503; M. Piarulli, S. Pastore, R. 
B. Wiringa, S. Brusilow, R. Lim,Phys. Rev. C 107 (1) (2023) 014314



Ws,μν
A = ∑

N
∑

σ
⨋ dϵ∫

dκ⊥dκ+

2(2π)3κ+

1
ξ

PN(κ̃, ϵ) ws,μν
N,σ (p, q)
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Hadronic tensor

In our approach the symmetric part of the hadronic tensor is found to be *

hadronic tensor of the 
nucleon

is parametrized by the SFs  and :Ws,μν
A FA

2 (x) FA
1 (x)

Where  and  with x =
Q2

2PA ⋅ q
ξ =

κ+

ℳ0[1; 2,3,…, A − 1]
z =

Q2

2p ⋅ q
=

p
P+

A

x
ξ

Unpolarized LF spectral function:


PN(κ̃, ϵ) =
1

2j + 1 ∑
ℳ

PN
σσ(κ̃, ϵ, S, ℳ)

Free nucleon SFFA
2 (x) = −

1
2

xgμνW
s,μν
A = ∑

N
∑

σ
∫ dϵ∫

dκ⊥

(2π)3

dκ+

2κ+
PN(κ̃, ϵ)FN

2 (z)

* E.Pace, M.Rinaldi, G.Salmè and S. Scopetta, Phys. Scr. 95, 064008 (2020)
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LC momentum distribution

In the Bjorken limit  so we can use the light-cone momentum distribution 

(LCMD) instead of the LF spectral function *
∫ dϵ∫ dκ+ = ∫ dκ+ ∫ dϵ

FA
2 (x) = −

1
2

xgμνW
s,μν
A = ∑

N
∑

σ
∫ dϵ∫

dκ⊥

(2π)3

dκ+

2κ+
PN(κ̃, ϵ)FN

2 (z)

* A. Del Dotto, E.Pace, G. Salmè and S.Scopetta,  Phys. Rev. C 95,014001 (2017)

LCMD: fN
1 (ξ) = ⨋ dϵ∫

dκ⊥

(2π)3

1
2κ+

PN(κ̃, ϵ)
Es

1 − ξ
= ∫ dk⊥nn(ξ, k⊥)

LF momentum distribution: 

nN(ξ, k⊥) =
1

2π ∫
A−1

∏
i=2

[dki] |
∂kz

∂ξ
| 𝒩N(k, k2, …, kA−1)

Squared nuclear wave function. Thanks to 
the BT construction, one is allowed to 
use the NR one

Determinant of the Jacobian matrix. LF boost: effect of a Poincaré 
covariance approach
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LC momentum distribution

LCMD: fN
1 (ξ) = ⨋ dϵ∫

dκ⊥

(2π)3

1
2κ+

PN(κ̃, ϵ)
Es

1 − ξ
= ∫ dk⊥nn(ξ, k⊥)

Since our approach fulfill both macro-locality and Poincaré covariance the LC momentum 
distribution must satisfies 2 essential sum rules:             


 : Baryon number SR;     

: Momentum SR (MSR)

A = ∫
1

0
dξ[Zfp

1 (ξ) + (A − Z)f n(ξ)]

1 = Z < ξ >p + (Z − N) < ξ >n ; < ξ >N = ∫
1

0
dξ ξ fN

1 (ξ)

Within the LFHD we are able to fulfill both sum rules at the same time!

Not possible with IF approach (Frankfurt & Strikman; Miller;….80’s)
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LC momentum distribution: numerical results for 4He

	0.01

	0.1

	1

	10

	0 	0.2 	0.4 	0.6 	0.8 	1

f 1
(ξ
)

ξ

• The tails of the distributions are generated by the 
short range correlations (SRC) induced by the 
potentials (i.e the high-momentum content of the 
1-body momentum distribution)


• The tails of the LC momentum distribution 
calculated by the Av18/UIX potential is larger than 
the ones obtained by the EFT potentials for both 

 and deuteron


• This difference will partially cancel out on the 
EMC ratio 

χ
4He

The distributions are peaked at 1/A with an accuracy of 1/1000:

MSR and Number of baryon sum rules are numerically satisfied

LC momentum distribution for  (peaked at 0.25) and deuteron (peaked at 0.5)4He

Solid lines: Av18/UIX. Dashed lines:NVIb+3N. Dot-dashed lines: NVIa+3N

F.F, E.Pace, M.Rinaldi, G.Salmè, S.Scopetta and M.Viviani,  Phys.Lett.B 851 (2024) 138587
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Convolution formula for the nuclear structure function

To calculate the EMC ratio  for any nucleus A, we need a NR realistic wave function 

and a parametrization for the free-nucleon structure functions

RA
EMC(x) =

FA
2 (x)

Fd
2(x)

We need both  and Fn
2 Fp

2

One can choice a parametrization for  and a parametrization for the ratio  because  could 

be only extracted by nuclear DIS data 


We used a parametrization for the ratio  extracted by MARATHON data* in Ref. [1]

Fp
2

Fn
2

Fp
2

Fn
2

Fn
2

Fp
2

FA
2 (x) = ∑

N
∫

1

ξmin

dξ FN
2 (

mx
ξMA

) fN
1 (ξ)

[1] E.Pace, M.Rinaldi, G.Salmè and S. Scopetta, Phys. Scr. 95, 064008 (2020)

*MARATHON Coll., Phys. Rev. Lett 128 (2022) 13,132003
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The EMC effect:results for 3He

E.Pace, M.Rinaldi, G.Salmè and S.Scopetta, Phys. Lett. B 839(2023) 127810

Solid line: Av18/UIX + SMC* 
Dashed line:Av18 + SMC* 
Dotted-dashed: Av18/UIX 
+CJ15**

Small but solid effect, comparable to the experimental data

Full squares: JLab data 
from experiment E03103 
[1] as reanalyzed in [2]

[1] J. Arrington, et al,  
Phys. Rev. C 104 (6) 
(2021) 065203 

[2] S. A. Kulagin and R. 
Petti, Phys. Rev. C 82, 
054614 (2010)

*[B. Adeva, et al., Phys. Lett. B 412 
(1997) 414–424.]

**[A. Accardi, L. T. Brady, W. 
Melnitchouk, J. F. Owens, N. Sato, Phys. 
Rev. D 93 (11) (2016) 114017]
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The EMC effect: results for 4He

0 0.2 0.4 0.6 0.8 1
x

0.8

0.9

1

1.1

1.2

1.3

1.4

(x
)

EM
C

R

Full squares: JLab data 
from experiment 
E03103 

Both lines calculated with 
Av18/UIX 
Solid line: SMC parametrization 
of  *   
Dashed line: CJ15 +TMC 
Parametrization of ** 

 extracted from MARATHON 
data 

Fp
2

Fp
2

Fn
2

*[B. Adeva, et al., Phys. Lett. B 412 
(1997) 414–424.]

**[A. Accardi, L. T. Brady, W. 
Melnitchouk, J. F. Owens, N. Sato, Phys. 
Rev. D 93 (11) (2016) 114017]

F.F, E.Pace, M.Rinaldi, G.Salmè, S.Scopetta and M.Viviani,  Phys.Lett.B 851 (2024) 138587

The dependence on the choice of the free nucleon SFs is largely under control in the properly 
EMC region



23

The EMC effect: results for 4He

0 0.2 0.4 0.6 0.8 1
x

0.8

0.9

1

1.1

1.2

1.3

1.4

(x
)

EM
C

R

Av18/UIX
NVIa
NVIb
E03103

The differences between the calculations from different potentials are of the same order for both 
nuclei. Definitely smaller than the difference between data and theoretical prediction

Full squares: JLab data from 
experiment E03103

F.F, E.Pace, M.Rinaldi, G.Salmè, S.Scopetta and M.Viviani,  Phys.Lett.B 851 (2024) 138587
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Wa,μν
A = ∑

N
∑

σ
⨋ dϵ∫

dκdκ+

2(2π)3κ+

1
ξ

PN
σ (κ̃, ϵ, S, ℳ) wa,μν

N,σ (p, q)

Hadronic tensor II

For the polarized DIS we need to calculate the antysimmetric part of the hadronic tensor:

hadronic tensor of the

nucleon

Spin-dependent LF spectral function

 is parametrized by the the spin-dependent SFs (SSFs)  and Wa,μν
A gA

1 (x, Q2) gA
2 (x, Q2)

As for the unpolarized case, in the Bjorken limit we can write a convolution formula for the SSFs:

, gA
j (x) = ∑

N
∫

1

ξm

dξ[gN
1 (z)lN

j (ξ)+gN
2 (z)hN

j (ξ)] j = 1,2



25

Spin-dependent SFs

The spin-dependent LCMD  and  are related to the transverse momentum-dependent 
distributions (TMDs) of the nucleons 

lN
j (ξ) hN

j (ξ)
ΔfN, gN

1T, Δ′￼T fN, hN
1L, hN

1T

We used the TMDs for  calculated with the Av18 potential in Ref. [1]3He

[1] R.Alessandro, A.Del Dotto, E.Pace, G.Perna, G.Salmè and S.Scopetta,  Phys.Rev.C 104(2021) 6,065204

GRSV parametrization [2] for the  SSFgN
1 (x)

 extracted by  with the Wandzura-Wilczek formula [3]:
gN
2 (x) gN

1 (x)

gN
2 (x) = − gN

1 (x) + ∫
1

x
dy

gN
1 (y)
y

[2] M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, Phys. Rev. D 63, 094005 (2001)

[3] S. Wandzura and F. Wilczek, Phys. Lett. B 72, 195 (1977)

, gA
j (x) = ∑

N
∫

1

ξm

dξ[gN
1 (z)lN

j (ξ)+gN
2 (z)hN

j (ξ)] j = 1,2



26

 SSFs3He
E.Proietti, F.F, E.Pace, M.Rinaldi, G.Salmè and  S.Scopetta,  Phys.Rev.C 110 (2024) 3, L031303

Experimental data from [1] (crosses), [2] (squares) and [3] (triangles)
[1] P. L. Anthony et al., Phys. Rev. D 54, 6620 (1996) [2] X. Zheng et al.,Phys. Rev. Lett. 92, 012004 (2004)

[3] D. Flay et al., Phys. Rev. D 94, 052003 (2016)
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Neutron SSFs

gA
j (x) = ∑

N
∫

1

ξm

dξ[gN
1 (z)lN

j (ξ)+gN
2 (z)hN

j (ξ)]

One can approximate this equation using that  are peaked around  and so 
extract the neutron SSFs:

lN
j (ξ), hN

j (ξ) ξ ≃ 1/A

gn̄
j (x) =

1
pn

j
[g3He

j (x) − 2pp
j gp

j (x)]

We compared our extraction of the neutron SSFS with the one of the GRSV parametrization and with 
the NR extraction, obtained through the effective polarizations calculated from a NR spectral 
function*

* R.Alessandro, A.Del Dotto, E.Pace, G.Perna, G.Salmè and S.Scopetta,  Phys.Rev.C 104(2021) 6,065204

 and pN
1 = ∫

1

0
dξ∫ dk⊥Δf(ξ, k⊥) pN

2 = ∫
1

0
dξ∫ dk⊥Δ′￼T f(ξ, k⊥)

Where the effective polarization  are integral of the TMDs  and *pN
j Δf(ξ, k⊥) Δ′￼T f(ξ, k⊥)
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Neutron SSFs
E.Proietti, F.F, E.Pace, M.Rinaldi, G.Salmè and  S.Scopetta,  Phys.Rev.C 110 (2024) 3, L031303

Solide lines: GRSV parametrization of the free neutron SSFs

Dashed lines: extraction of the free neutron SSFs from relativistic effective polarizations

Dotted line: extraction of the free neutron SSFs from non-relativistic effective polarizations



29

Conclusions

• We proposed a rigorous formalism for the 
calculation of nuclear SFs and SSFs 
involving only nucleonic DOF with the 
conventional nuclear physics


• For  we obtain results in agreement with 
experimental data for both EMC effect and 
SSFs. Useful analysis for planned 
experiments in future facilities


• For  the deviations from experimental data 
could be ascribed to genuine QCD effects: 
our results provide a reliable baseline to 
study exotic phenomena 

• In every case the dependence on the choice 
of the nuclear potential and the free nucleon 
SFs is largely under control

3He

4He

• Include off-shell corrections to our 
calculations


• Calculate the EMC effect for heavier nuclei. 
We are working on 6Li

To do next:

• With the same approach we are developing a 
new formalism for the calculation of the 
nuclear Double Parton Distributions (DPDs) 
for light nuclei*

In preparation:

* A.Ceccopieri, F.F., N.Iles, E.Pace, M.Rinaldi and G. Salmè, in preparation
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Tritium EMC effect

0 0.2 0.4 0.6 0.8 1
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0.95
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(x
)

EM
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Results similar to  and 3He 4He

No experimental data

Solid line: Av18/UIX; Dashed-line: NVIb/UIX
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Extraction of  via MARATHON dataFn
2 /Fp

2

MARATHON coll. : experimental data of the super-ratio  Rht(x) = F3He
2 (x)/F3H

2 (x)

: 2p + n; : n + 2p3He 3H

Is possible to extract the ratio  through the super-ratioFn
2(x)/Fp

2 (x)

Dashed line: ratio from SMC collaboration

Empty squares: MARATHON extraction

Solid line: cubic and conic extractions from  SMC parametrization, fitted to 
MARATHON data

Fp
2

E.Pace, M.Rinaldi, G.Salmè and S.Scopetta Phys. Lett. B 839(2023) 127810
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Canonical and LF spin

Wigner rotation for the J=1/2 case

           is the Melosh rotation connecting the intrinsic LF and canonical frames, reached through different boosts  
from a given frame where the particle is moving

two-dimensional spinor

In Instant form (initial hyperplane t=0), one can couple spins and orbital angular momenta via Clebsch-Gordan  
(CG) coefficients. In this form the three rotation generators are independent of the the interaction. 

To embed the CG machinery in the LFHD one needs unitary operators, the so-called Melosh rotations that 
relate the LF spin wave function and the canonical one. For a particle of spin (1/2) with LF momentum 
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LF spectral function and LC Correlator

isospin p = fermion momentum

parent system  
(nucleus, nucleon..)

The particle contribution to the correlator in valence approximation, i.e. the result obtained if the 
antifermion contributions are disregarded, is related to the LF SF:

In deriving this expression it naturally appears the momentum     in the intrinsic reference frame of the cluster [1,(23)], 
where particle 1 is free and the (23) pair is fully interacting.

The fermion correlator in terms of the LF coordinates is [e.g., Barone, Drago, Ratcliffe, Phys. Rep. 359, 
1 (2002)]
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TMDs and LF spectral function
14

TMDs                  Tr LC correlator                 Tr Spectral function
obtained from obtained from

The integration                                  of Tr of SF 
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TMDs and 3He LF spectral function

The procedure works for any three-body J = 1/2 system (in valence 
approx!)

3He                                      Proton

CORRESPONDENCE

the 3He TMDs could be obtained from spin asymmetries in                  experiments: 
in progress!

We show our calculation for the TMDs of He using Av18 + UIX wfs (A. Kievsky, M. 
Viviani et al.) 
Thus testing  LFRHD and of the importance of Relativity in nuclear structure. 
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3He TMDs 

PROTON                                                                     NEUTRON
Numerical results A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204) 
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3He TMDs 

PROTON                                                                     NEUTRON
Numerical results A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204) 
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 LC momentum distributions 

From the normalization of the Spectral Function one has

unpolarized distribution

E. Pace, M.R., G. Salmè and S. Scopetta, ArXiv:2206.05485
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 LC momentum distributions 

PROTON                                                    NEUTRON

E. Pace, M.R., G. Salmè and S. Scopetta, ArXiv:2206.05485
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 Backup Slides: effective polarizations
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 Backup Slides: effective polarizations
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LF spectral function decomposition

The LF spin-dependent spectral function (SF), for a nucleus with polarization S, can be macroscopically 
decomposed in terms of the available vectors: 

unpolarized SF pseudovector

 The scalar functions           depend, for              on
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LF spectral function and momentum distribution

By integrating the LF SF on   , equivalent to the integration on the    ≡ internal energy of the spectator 
system, one straightforwardly gets the LF spin-dependent momentum distribution

The decomposition is useful to get:

an explicit interplay between 
transverse momentum component 

and spin dofs

relations between Transverse-momentum 
distributions (TMDs) in the valence sector


