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Introduction
• One of the main goals of EIC/EicC is to understand the three dimensional structure 

of nucleons in terms of quarks and gluons as well as their spin and angular 
momentum distributions. 

• Gluon distributions: crucial to understand low-x phenomena. Gluon PDFs are 
mainly small-x dominated. 

• Form factors, PDFs, GPDs, TMDs, Wigner distributions…. Encode different 
informations. 

• Gluon distributions are not yet well understood - not enough theoretical studies. 

• Large uncertainty in small-x, specially for polarized pdf            not well constrained. 

• Except lattice, they are mostly studied in different models.
In this talk, I’ll mainly discuss gluon TMDs and GPDs.



TMDs: DY and SIDIS

• SIDIS and Drell-Yan processes are sensitive to TMDs.
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Quark TMDs

• TMD factorization:  DY:  

• TMDs: 3D spatial structure of proton  

• —> Transverse motion of partons, spin-transverse momentum correlations 

• TMDS:                   spin asymmetries  

• Azimuthal asymmetry of unpolarised quarks in transversely polarised proton: Sivers 
effect.  

• Final State Interaction (FSI) in SIDIS (Initial State Interaction for DY): gluon 
exchange between the struck quark and the remnant  produces nonzero Sivers 
effect.

dσ
dQ2dydk2

T
= ∫ HDY(Q) ⊗ f(Q2, x1, kT) ⊗ f(Q2, x2, kT)

Brodsky, Hwang, Schmidt, PLB530, 99* Talk by Marco Radici
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Gluon TMDs
• Gluon TMDs : experimentally/theoretically not yet well understood. 

• Gluon distributions are small-x dominated. To study gluon TMDs, high energy and/or 
small x are required. 

• Phenomenological models at small -x:  Weiszacker-Williams(WW) [both gauge links are 
future pointing], dipole [one future and another past-pointing gauge link] 

• EIC/EicC will probe the gluon distributions for both unpolarized and polarized proton.         

• Gluon Sivers TMD:  [back to back D meson pair production], 
 

• Measurement of azimuthal asymmetries/transverse momentum distributions :gluon TMDs 

• TMDs are not universal [due to FSI/ISI dependence]- -  Sivers TMDs for quarks in SIDIS 
and DY  differ by an overall negative sign.

e p↑ → eQQ̄X, ep → eDD̄X
ep↑ → eJ/Ψ X C.Pisano 1912.13020 

D. Boer, 1601.01813



Light front model

• Spectator model studies provide good insight into the different partonic 
distributions. 

• Simplified, but insightful, help to understand the proton structure. 

• consider the proton as a composite state of spin 1/2 spectator+ gluon(active 
parton).

 

•  = LFWF corresponding to the two particle state 
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where ψ↑ð↓Þ
λgλX

ðx;p⊥Þ are the LFWFs corresponding to the
two-particle state jλg; λX; xPþ;p⊥i with proton helicities
λp ¼ ↑ð↓Þ. Here, λg and λX stand for the helicity compo-
nents of the constituent gluon and spectator, respectively.
Our proposal for the light-front wave functions in

Eq. (1) is inspired by the wave function of the physical
electron [36], which is made up of a spin-1 photon and a
spin-12 electron. We argue that the light-front wave functions
for the Fock-state expansion for a proton with Jz ¼ þ1=2
have the following form:
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where M and MX represent the masses of the proton and
spectator, respectively. φðx;p2

⊥Þ is the modified form of the

soft-wall AdS/QCD wave function [91] modeled by intro-
ducing the parameters a and b. Similarly, the light-front
wave functions for the proton with Jz ¼ −1=2 have the
form
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The behavior at x → 0, as well as the counting rules at
x → 1, provide information on the various gluon distribu-
tions [88,89]. To elaborate, the asymptotic behavior of the
PDFs at small x is adopted from the observed Regge
behavior in particle colliders, and the large-x behavior is
based on the power counting rules for hard scattering [89].
Keeping all these in mind, we have modified the soft wall
AdS-QCD wave function, φðx;p2

⊥Þ, The complete form of
the modified soft-wall AdS/QCD wave function is given by,
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where a and b are our model parameters. We take AdS/QCD scale parameter κ ¼ 0.4 GeV [15]. The values of the model
parameters a, b, and the normalization constant Ng are fixed by fitting the gluon unpolarized PDF at the scale Q0 ¼ 2 GeV
with NNPDF3.0 data. For the stability of the proton, the spectator mass, MX is considered higher than the proton mass,
i.e., MX > M.

III. GLUON TMDs

In the light front formalism, the unintegrated gluon correlation function for leading twist gluon TMDs in the SIDIS
process is given by the following relation [77]:
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where Fμν is the gluon field strength tensor and Wþ∞;ab is
the Wilson line that ensures the correlator to be gauge
invariant. The subscript “þ” specifies that the Wilson line
in the correlator operator expression is future-pointing,

which is necessary for SIDIS TMD distributions. There
are eight leading twist gluon TMDs out of which four of
them are T-even (fg1, g

g
1L, g

g
1T , and h⊥g

1 ) and the remaining
four are T-odd (f⊥g

1T ; h
⊥g
1L ; h

g
1T; h

⊥g
1T ) [1,77]. The twist-2
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behavior in particle colliders, and the large-x behavior is
based on the power counting rules for hard scattering [89].
Keeping all these in mind, we have modified the soft wall
AdS-QCD wave function, φðx;p2

⊥Þ, The complete form of
the modified soft-wall AdS/QCD wave function is given by,

φðx;p2⊥Þ ¼ Ng
4π
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log½1=ð1 − xÞ&

x

r
xbð1 − xÞa exp

"
− log½1=ð1 − xÞ&

2κ2x2
p2⊥

%
: ð4Þ

where a and b are our model parameters. We take AdS/QCD scale parameter κ ¼ 0.4 GeV [15]. The values of the model
parameters a, b, and the normalization constant Ng are fixed by fitting the gluon unpolarized PDF at the scale Q0 ¼ 2 GeV
with NNPDF3.0 data. For the stability of the proton, the spectator mass, MX is considered higher than the proton mass,
i.e., MX > M.

III. GLUON TMDs

In the light front formalism, the unintegrated gluon correlation function for leading twist gluon TMDs in the SIDIS
process is given by the following relation [77]:

Φg½ij&ðx;p⊥; SÞ ¼
1

xPþ

Z
dξ−

2π
d2ξ⊥
ð2πÞ2

eik·ξhP; SjFþj
a ð0ÞWþ∞;abð0; ξÞFþi

b ðξÞjP;Si
####
ξþ¼0þ

; ð5Þ

where Fμν is the gluon field strength tensor and Wþ∞;ab is
the Wilson line that ensures the correlator to be gauge
invariant. The subscript “þ” specifies that the Wilson line
in the correlator operator expression is future-pointing,

which is necessary for SIDIS TMD distributions. There
are eight leading twist gluon TMDs out of which four of
them are T-even (fg1, g

g
1L, g

g
1T , and h⊥g

1 ) and the remaining
four are T-odd (f⊥g

1T ; h
⊥g
1L ; h

g
1T; h

⊥g
1T ) [1,77]. The twist-2
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#### − 1;þ 1

2
; xPþ;p⊥
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; ð1Þ

where ψ↑ð↓Þ
λgλX

ðx;p⊥Þ are the LFWFs corresponding to the
two-particle state jλg; λX; xPþ;p⊥i with proton helicities
λp ¼ ↑ð↓Þ. Here, λg and λX stand for the helicity compo-
nents of the constituent gluon and spectator, respectively.
Our proposal for the light-front wave functions in

Eq. (1) is inspired by the wave function of the physical
electron [36], which is made up of a spin-1 photon and a
spin-12 electron. We argue that the light-front wave functions
for the Fock-state expansion for a proton with Jz ¼ þ1=2
have the following form:
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⊥ þ ip2
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M −
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2

p ðp1
⊥ þ ip2

⊥Þ
x

φðx;p2
⊥Þ;

ψ↑
−1−1

2

ðx;p⊥Þ ¼ 0; ð2Þ

where M and MX represent the masses of the proton and
spectator, respectively. φðx;p2

⊥Þ is the modified form of the

soft-wall AdS/QCD wave function [91] modeled by intro-
ducing the parameters a and b. Similarly, the light-front
wave functions for the proton with Jz ¼ −1=2 have the
form
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M −
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ð1 − xÞ
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φðx;p2
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ðx;p⊥Þ ¼ −
ffiffiffi
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p ðp1
⊥ þ ip2

⊥Þ
xð1 − xÞ

φðx;p2
⊥Þ: ð3Þ

The behavior at x → 0, as well as the counting rules at
x → 1, provide information on the various gluon distribu-
tions [88,89]. To elaborate, the asymptotic behavior of the
PDFs at small x is adopted from the observed Regge
behavior in particle colliders, and the large-x behavior is
based on the power counting rules for hard scattering [89].
Keeping all these in mind, we have modified the soft wall
AdS-QCD wave function, φðx;p2

⊥Þ, The complete form of
the modified soft-wall AdS/QCD wave function is given by,

φðx;p2⊥Þ ¼ Ng
4π
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log½1=ð1 − xÞ&

x

r
xbð1 − xÞa exp

"
− log½1=ð1 − xÞ&

2κ2x2
p2⊥

%
: ð4Þ

where a and b are our model parameters. We take AdS/QCD scale parameter κ ¼ 0.4 GeV [15]. The values of the model
parameters a, b, and the normalization constant Ng are fixed by fitting the gluon unpolarized PDF at the scale Q0 ¼ 2 GeV
with NNPDF3.0 data. For the stability of the proton, the spectator mass, MX is considered higher than the proton mass,
i.e., MX > M.

III. GLUON TMDs

In the light front formalism, the unintegrated gluon correlation function for leading twist gluon TMDs in the SIDIS
process is given by the following relation [77]:

Φg½ij&ðx;p⊥; SÞ ¼
1

xPþ

Z
dξ−

2π
d2ξ⊥
ð2πÞ2

eik·ξhP; SjFþj
a ð0ÞWþ∞;abð0; ξÞFþi

b ðξÞjP;Si
####
ξþ¼0þ

; ð5Þ

where Fμν is the gluon field strength tensor and Wþ∞;ab is
the Wilson line that ensures the correlator to be gauge
invariant. The subscript “þ” specifies that the Wilson line
in the correlator operator expression is future-pointing,

which is necessary for SIDIS TMD distributions. There
are eight leading twist gluon TMDs out of which four of
them are T-even (fg1, g

g
1L, g

g
1T , and h⊥g

1 ) and the remaining
four are T-odd (f⊥g

1T ; h
⊥g
1L ; h

g
1T; h
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1T ) [1,77]. The twist-2
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Fixing the parameters

• 4 parameters in the model:  

•  : fixed by normalization condition,  

• Spectator mass  (proton mass) 

• Behaviour of the distribution is determined by  

• The parameters in the model are fixed by fitting the unpolarised gluon pdf    
with NNPDF3.0 NLO data at  GeV.

a, b, Ng, MX

Ng

MX > M

a and b

fg
1 (x)

Q0 = 2



Fitting the parameters

•  Unpolarized gluon PDF:      

•                                            

• We take 300 NNPDF3.0NLO data points in the interval     

•               

where AðxÞ, CðxÞ are same as (11), while B̃ðxÞ is given as

B̃ðxÞ ¼ 1 − ð1 − xÞ2

x2ð1 − xÞ2
: ð14Þ

The worm-gear gluon TMD gg1Tðx;p2
⊥Þ is defined as the distribution of a circularly polarized gluon in a transversely

polarized proton [86] and given by,

p⊥:S⊥
M

gg1Tðx;p2
⊥Þ ¼ −

1

16π3
iϵμνT

X

λgλ0gλX

ϵ
λ0g$
μ ϵ

λg
ν ψ

↑$
λ0gλX

ðx;p2
⊥Þψ

↓
λgλX

ðx;p2
⊥Þ

¼ 1

16π3
i
2

X

λgλ0gλX

ðϵλ
0
g$
1 ϵ

λg
2 − ϵ

λ0g$
2 ϵ

λg
1 Þ½ψ

↑$
λ0gλX

ðx;p2⊥Þψ
↓
λgλX

ðx;p2⊥Þ þ ψ↓$
λ0gλX

ðx;p2⊥Þψ
↑
λgλX

ðx;p2⊥Þ'

gg1Tðx;p2
⊥Þ ¼ −

4M
16π3x

!
M −

MX

ð1 − xÞ

"
½φðx;p2

⊥Þ'2: ð15Þ

Using the soft-wall AdS/QCD wave function (4), the above equation can be written as,

gg1Tðx;p2
⊥Þ ¼ −

4M
πκ2

N2
gðMð1 − xÞ −MXÞ log½1=ð1 − xÞ'x2b−2ð1 − xÞ2a−1 exp½−CðxÞp2

⊥': ð16Þ

Finally, The Boer-Mulders gluon TMD h⊥g
1 ðx;p2

⊥Þ, which describes a linearly polarized gluon inside an unpolarized proton,
is given as,

p2
⊥

2M2
h⊥g
1 ðx;p2

⊥Þ ¼
1

2
ημνT

X

λNλg≠λ0gλX

1

16π3

h
ϵ
λ0g$
μ ϵ

λg
ν ψ

$λN
λ0gλX

ðx;p⊥Þψ
λN
λgλX

ðx;p⊥Þ
i
;

h⊥g
1 ðx;p2

⊥Þ ¼ −
1

16π3
M2

p4
⊥

X

λNλX

h
ðp1 − ip2Þ2ψ$λN

þ1λX
ðx;p⊥Þψ

λN
−1λXðx;p⊥Þ þ ðp1 þ ip2Þ2ψ$λN

−1λXðx;p⊥Þψ
λN
þ1λX

ðx;p⊥Þ
i

¼ 8M2

16π3
1

x2ð1 − xÞ
½φðx;p2

⊥Þ'2;

h⊥g
1 ðx;p2

⊥Þ ¼
8M2

πκ2
N2

g log½1=ð1 − xÞ'x2b−3ð1 − xÞ2a−1 exp½−CðxÞp2
⊥': ð17Þ

where we used ημνT ¼ gμνT þ 2pμ
⊥p

ν
⊥=p

2
⊥. After performing the p⊥-integration of the gluon unpolarized TMD, Eq. (10),

we obtain the corresponding collinear unpolarized PDF, fg1ðxÞ as,

fg1ðxÞ ¼
Z

d2p⊥f
g
1ðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1þ ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð18Þ

The gluon helicity PDF gg1LðxÞ can be obtained after the p⊥-integration of the gluon helicity TMD in Eq. (13) as,

gg1LðxÞ ¼
Z

d2p⊥g
g
1Lðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1 − ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð19Þ
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0.001 < x < 1

Similarly, the collinear PDFs of worm-gear, Eq. (16), and
the Boer-Mulders, Eq. (17), TMDs are given as,

gg1TðxÞ ¼
Z

d2p⊥g
g
1Tðx;p2

⊥Þ

¼ −4MN2
gðMð1 − xÞ −MXÞx2bð1 − xÞ2a−1; ð20Þ

and,

h⊥g
1 ðxÞ ¼

Z
d2p⊥h

⊥g
1 ðx;p2

⊥Þ

¼ 8M2N2
gx2b−1ð1 − xÞ2a−1: ð21Þ

IV. NUMERICAL FITTING AND MODEL
PARAMETERS

There are four parameters a, b, Ng, andMX in our model,
which will decide the goodness of the model. The parameters
Ng and MX are free parameters and they are fixed by
normalization conditions of the gluon PDFs and spectator
mass properties of the proton, respectively. The parameters a
and b decide the behavior of the distributions in extreme
limits of x are crucial to fix. We determine these model
parameters, by fitting our unpolarized gluon distribution
with the latest available gluon PDF data at NLO of the gluon
distribution xfg1ðxÞ from the global analysis by the NNPDF
Collaboration [39]. We particularly fit NNPDF3.0 NLO
unpolarized gluon distribution at the scaleQ0 ¼ 2 GeV. We
choose 300 data points within the interval 0.001 < x < 1
and 100 replicas of the gluon distribution. The effective
uncertainties are calculated from the standard deviation of
these 100 replicas for each value of xi.
We set the gluon mass Mg ¼ 0. The choice of model

parameters a and b depend on the spectator mass. During the
search for the optimal fit, we find that for spectator mass
close to the proton mass, the model parameters produce a
more physically acceptable spin contribution of the gluon
than for larger spectator mass. Here, we choose MX ¼
0.985 GeV. In a similar kind of spectator model, the
spectator mass has been chosen as MX ¼ 0.943 GeV [81].
The model is very sensitive in the small x region. Even in the
NNPDF analysis, the polarized PDF has large uncertainty in
the small-x region, which makes the spin contribution
prediction sensitive to the lower limit of x. Keeping all of
this in mind, we exclude a very small x region from our
fitting and our model is valid for the range 0.001 < x < 1.
The value of the fitted model parameters is listed in

Table I. These model parameters are fixed by fitting the
NNPDF3.0 NLO dataset at Q0 ¼ 2 GeV with a χ2min ¼
20.37 with the normalization constant Ng ¼ 2.088. We
notice that the 2σ uncertainty to the parameter fitting is
close to the experimental error corridor, and we take 2σ
uncertainty as a standard maximized error in this model for

further reporting. The parameters in the wave functions
determined by the fitting of unpolarized gluon PDF can be
further employed to predict the other gluon distributions e.g.,
gluon helicity, transversity, TMDs etc. In Fig. 1, we show the
results of our fit for the unpolarized gluon distribution
xfg1ðxÞ at Q0 ¼ 2 GeV. The solid magenta band identifies
the NNPDF3.0 parametrization of xfg1ðxÞ [94] and the
blue-dashed line with the blue band shows our model results
at 2σ error corridor.

V. RESULTS

The value of the average longitudinal momentum of the
gluon is defined as the second Mellin’s moment of the
unpolarized PDF as,

hxig ¼
Z

1

0.001
dxxfg1ðxÞ ¼ 0.416þ0.048

−0.041 ; ð22Þ

which is close to the recent lattice calculations at
Q2

0 ¼ 4 GeV2, hxig ¼ 0.427ð92Þ [95]. In Table II, we
compared the average value of the longitudinal momentum
fraction for the unpolarized gluon PDF with the available
theoretical models in the literature [80,81,86,96].
In Fig. 2, we show our model predictions for the

polarized gluon distribution xgg1LðxÞ (left panel) and the

FIG. 1. Our model unpolarized gluon PDF fg1ðxÞ (blue dashed
line with blue band of 2σ error) compared with the NNPDF3.0nlo
dataset (solid magenta line with magenta band) as a function of
longitudinal momentum fraction x in the kinematics region
0.001 ≤ x ≤ 1 at Q0 ¼ 2 GeV.

TABLE I. Numerical values and the uncertainties of the fitted
model parameters a and b.

Parameter Central value 1σ-error band 2σ-error band

a 3.88 %0.1020 %0.2232
b −0.53 %0.0035 %0.0071
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Large uncertainty in small-x region 
Excluded in our model.

(Considered 
100 replicas of 

the NNPDF 
data) 
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  Q0 = 2 GeV

* Gluon mass  
**Parameters  depend on spectator mass( ) 
We choose  : close to proton 
mass

mg = 0
a, b MX

Mx = 0943 MeV

fg(x)



• Model is very sensitive to small ,     region is excluded from the fit. 

• Fitted parameters:     (  error) 

• Except the unpolarized gluon PDF, everything else is our model prediction. 

• Average longitudinal momentum = second Mellin moment of unpolarised pdf: 

•      

•  lattice result:   

• Spectator model [1]:  

• Spectator model[2]:

x x < 0.001

a = 3.88 ± 0.22, b = − 0.53 ± 0.01 2σ

⟨x⟩g = ∫0.001
dx x fg

1 (x) = 0.416+0.048
−0.041

⟨x⟩g = 0.427(92)

⟨x⟩g = 0.424

• C. Alexandrou et al, PRD 101, 094512

⟨x⟩g = 0.411

A. Becchetta et al, EPJC 80, 733

Lu  & Ma, PRD 94, 094022



Gluon helicity pdf

•

gluon helicity asymmetry ratio gg1LðxÞ=f
g
1ðxÞ (right panel)

at Q0 ¼ 2 GeV. The red band in the left panel of Fig. 2
represents the NNPDFpol1.1 results, which have large
uncertainty in the entire range of x and particularly in the
small-x region. The central line of NNPDFpol1.1 data is
negative in the x close to 0.001 region, while in our model,
the gluon helicity distribution is always positive. Overall,
we find that our gluon helicity distribution in the entire
region of x except the domain 0.07 < x < 0.3 is more or
less consistent with the global analysis. Within the domain
0.07 < x < 0.3, the distribution is going beyond the
uncertainty band. As a result, we obtain the high value
of gluon spin contribution in the small-x region as shown
in Table III. The spin contribution for large-x mainly
comes from the quark sector and we cannot expect much
contribution from gluons. In Table III, we list the
dependence of the gluon helicity on the x range and also
compare them with the other model predictions of gluon
helicity in certain ranges of x. We observe that the
maximum contribution to the gluon helicity comes from
the small-x region. Compared to other model results, the
gluon helicity contributions for different x regions are
found to be relatively larger in our model. The high gluon
spin contribution has been reported in Refs. [96,97].
Meanwhile, in Ref. [80], the gluon spin contribution is
relatively small, sg ¼ 0.159$ 0.011, which may be due to
the fact that the unpolarized as well as helicity PDFs have
been simultaneously fitted in that model. The latest lattice

result of the gluon total angular momentum is reported to
be Jg ¼ 0.187ð46Þ at the scale 2 GeV [95].
In the right panel of Fig. 2, the gluon helicity asymmetry

has been compared with available experimental data.
From this comparison, we notice that our result for helicity
asymmetry is in good agreement with the experimental
measurements. In our model, the helicity asymmetry ratio
is independent of the model parameters a and b and
depends only on the spectator mass MX, which satisfies
the following model-independent QCD constraints [88,89],

lim
x→0

gg1LðxÞ
fg1ðxÞ

¼ 0; and lim
x→1

gg1LðxÞ
fg1ðxÞ

¼ 1: ð23Þ

The uncertainty band in the helicity asymmetry ratio
plot (Fig. 2) is created by including the errors in the
spectator mass (MX ¼ 0.985þ0.044

−0.045 ) in such a way that the
maximum spin contribution should not go beyond
the total proton spin and the lower cutoff for the spectator
mass is MX → M.
In Fig. 3, we show x-weighted collinear PDFs of worm-

gear gg1TðxÞ and the Boer-Mulders h⊥g
1 ðxÞ TMDs as a

function of x. There is no PDF corresponding to the
collinear limit of the worm-gear and the Boer-Mulders
TMDs. We have also shown their comparison with the

TABLE II. Comparison of the numerical values of the average
longitudinal momentum of the gluon at Q0 ¼ 2 GeV.

This work [80] [81] [96] [95]

hxig 0.416 0.424 0.411 0.409 0.427

FIG. 2. The gluon helicity PDF, gg1LðxÞ (left panel) compared with the NNPDFpol1.1 [45] and the spectator model results [80] at
Q0 ¼ 2 GeV. The right panel shows the comparison for the helicity asymmetry gg1LðxÞ=f

g
1ðxÞ from our calculation (blue band) with the

experimental measurements. The direct measurements of COMPASS [65,98], HERMES [99] and SMC [100] are obtained in the leading
order from high pT hadrons while open charm muon production at COMPASS [101] are taken from next-to-leading order at different
values of x.

TABLE III. Comparison of the numerical values of the gluon
spin contribution with the available data at Q0 ¼ 2 GeV.

Gluon helicity Central value Our predictions

ΔG ¼
R
0.3
0.05 dxΔgðxÞ 0.20 [53] 0.28þ0.047

−0.037

ΔG ¼
R
0.2
0.05 dxΔgðxÞ 0.23(6) [45] 0.22þ0.033

−0.024

ΔG ¼
R
1
0.05 dxΔgðxÞ 0.19(6) [41] 0.326þ0.066

−0.050
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gluon helicity asymmetry ratio gg1LðxÞ=f
g
1ðxÞ (right panel)

at Q0 ¼ 2 GeV. The red band in the left panel of Fig. 2
represents the NNPDFpol1.1 results, which have large
uncertainty in the entire range of x and particularly in the
small-x region. The central line of NNPDFpol1.1 data is
negative in the x close to 0.001 region, while in our model,
the gluon helicity distribution is always positive. Overall,
we find that our gluon helicity distribution in the entire
region of x except the domain 0.07 < x < 0.3 is more or
less consistent with the global analysis. Within the domain
0.07 < x < 0.3, the distribution is going beyond the
uncertainty band. As a result, we obtain the high value
of gluon spin contribution in the small-x region as shown
in Table III. The spin contribution for large-x mainly
comes from the quark sector and we cannot expect much
contribution from gluons. In Table III, we list the
dependence of the gluon helicity on the x range and also
compare them with the other model predictions of gluon
helicity in certain ranges of x. We observe that the
maximum contribution to the gluon helicity comes from
the small-x region. Compared to other model results, the
gluon helicity contributions for different x regions are
found to be relatively larger in our model. The high gluon
spin contribution has been reported in Refs. [96,97].
Meanwhile, in Ref. [80], the gluon spin contribution is
relatively small, sg ¼ 0.159$ 0.011, which may be due to
the fact that the unpolarized as well as helicity PDFs have
been simultaneously fitted in that model. The latest lattice

result of the gluon total angular momentum is reported to
be Jg ¼ 0.187ð46Þ at the scale 2 GeV [95].
In the right panel of Fig. 2, the gluon helicity asymmetry

has been compared with available experimental data.
From this comparison, we notice that our result for helicity
asymmetry is in good agreement with the experimental
measurements. In our model, the helicity asymmetry ratio
is independent of the model parameters a and b and
depends only on the spectator mass MX, which satisfies
the following model-independent QCD constraints [88,89],

lim
x→0

gg1LðxÞ
fg1ðxÞ

¼ 0; and lim
x→1

gg1LðxÞ
fg1ðxÞ

¼ 1: ð23Þ

The uncertainty band in the helicity asymmetry ratio
plot (Fig. 2) is created by including the errors in the
spectator mass (MX ¼ 0.985þ0.044

−0.045 ) in such a way that the
maximum spin contribution should not go beyond
the total proton spin and the lower cutoff for the spectator
mass is MX → M.
In Fig. 3, we show x-weighted collinear PDFs of worm-

gear gg1TðxÞ and the Boer-Mulders h⊥g
1 ðxÞ TMDs as a

function of x. There is no PDF corresponding to the
collinear limit of the worm-gear and the Boer-Mulders
TMDs. We have also shown their comparison with the

TABLE II. Comparison of the numerical values of the average
longitudinal momentum of the gluon at Q0 ¼ 2 GeV.

This work [80] [81] [96] [95]
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FIG. 2. The gluon helicity PDF, gg1LðxÞ (left panel) compared with the NNPDFpol1.1 [45] and the spectator model results [80] at
Q0 ¼ 2 GeV. The right panel shows the comparison for the helicity asymmetry gg1LðxÞ=f

g
1ðxÞ from our calculation (blue band) with the

experimental measurements. The direct measurements of COMPASS [65,98], HERMES [99] and SMC [100] are obtained in the leading
order from high pT hadrons while open charm muon production at COMPASS [101] are taken from next-to-leading order at different
values of x.
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we find that our gluon helicity distribution in the entire
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In the right panel of Fig. 2, the gluon helicity asymmetry

has been compared with available experimental data.
From this comparison, we notice that our result for helicity
asymmetry is in good agreement with the experimental
measurements. In our model, the helicity asymmetry ratio
is independent of the model parameters a and b and
depends only on the spectator mass MX, which satisfies
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order from high pT hadrons while open charm muon production at COMPASS [101] are taken from next-to-leading order at different
values of x.
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order from high pT hadrons while open charm muon production at COMPASS [101] are taken from next-to-leading order at different
values of x.
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uncertainty in the entire range of x and particularly in the
small-x region. The central line of NNPDFpol1.1 data is
negative in the x close to 0.001 region, while in our model,
the gluon helicity distribution is always positive. Overall,
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region of x except the domain 0.07 < x < 0.3 is more or
less consistent with the global analysis. Within the domain
0.07 < x < 0.3, the distribution is going beyond the
uncertainty band. As a result, we obtain the high value
of gluon spin contribution in the small-x region as shown
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g
1ðxÞ from our calculation (blue band) with the

experimental measurements. The direct measurements of COMPASS [65,98], HERMES [99] and SMC [100] are obtained in the leading
order from high pT hadrons while open charm muon production at COMPASS [101] are taken from next-to-leading order at different
values of x.
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Gluon TMDs

• The correlator for gluon TMDs in SIDIS: 

•  

• At leading twist 8 gluon TMDs: 4 are T-even and 4 are T-odd.

jP;↑ð↓Þi ¼
Z

d2p⊥dx
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p ×
"
ψ↑ð↓Þ
þ1þ1

2

ðx;p⊥Þ
####þ 1;þ 1

2
; xPþ;p⊥

$
þ ψ↑ð↓Þ

þ1−1
2

ðx;p⊥Þ
####þ 1;−

1

2
; xPþ;p⊥

$

þ ψ↑ð↓Þ
−1þ1

2

ðx;p⊥Þ
#### − 1;þ 1

2
; xPþ;p⊥

$
þ ψ↑ð↓Þ

−1−1
2

ðx;p⊥Þ
#### − 1;−

1

2
; xPþ;p⊥

$%
; ð1Þ

where ψ↑ð↓Þ
λgλX

ðx;p⊥Þ are the LFWFs corresponding to the
two-particle state jλg; λX; xPþ;p⊥i with proton helicities
λp ¼ ↑ð↓Þ. Here, λg and λX stand for the helicity compo-
nents of the constituent gluon and spectator, respectively.
Our proposal for the light-front wave functions in

Eq. (1) is inspired by the wave function of the physical
electron [36], which is made up of a spin-1 photon and a
spin-12 electron. We argue that the light-front wave functions
for the Fock-state expansion for a proton with Jz ¼ þ1=2
have the following form:

ψ↑
þ1þ1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ð−p1
⊥ þ ip2

⊥Þ
xð1 − xÞ

φðx;p2
⊥Þ;

ψ↑
þ1−1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p &
M −

MX

ð1 − xÞ

'
φðx;p2

⊥Þ;

ψ↑
−1þ1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ðp1
⊥ þ ip2

⊥Þ
x

φðx;p2
⊥Þ;

ψ↑
−1−1

2

ðx;p⊥Þ ¼ 0; ð2Þ

where M and MX represent the masses of the proton and
spectator, respectively. φðx;p2

⊥Þ is the modified form of the

soft-wall AdS/QCD wave function [91] modeled by intro-
ducing the parameters a and b. Similarly, the light-front
wave functions for the proton with Jz ¼ −1=2 have the
form

ψ↓
þ1þ1

2

ðx;p⊥Þ ¼ 0;

ψ↓
þ1−1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ð−p1
⊥ þ ip2

⊥Þ
x

φðx;p2
⊥Þ;

ψ↓
−1þ1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p &
M −

MX

ð1 − xÞ

'
φðx;p2

⊥Þ;

ψ↓
−1−1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ðp1
⊥ þ ip2

⊥Þ
xð1 − xÞ

φðx;p2
⊥Þ: ð3Þ

The behavior at x → 0, as well as the counting rules at
x → 1, provide information on the various gluon distribu-
tions [88,89]. To elaborate, the asymptotic behavior of the
PDFs at small x is adopted from the observed Regge
behavior in particle colliders, and the large-x behavior is
based on the power counting rules for hard scattering [89].
Keeping all these in mind, we have modified the soft wall
AdS-QCD wave function, φðx;p2

⊥Þ, The complete form of
the modified soft-wall AdS/QCD wave function is given by,

φðx;p2⊥Þ ¼ Ng
4π
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log½1=ð1 − xÞ&

x

r
xbð1 − xÞa exp

"
− log½1=ð1 − xÞ&

2κ2x2
p2⊥

%
: ð4Þ

where a and b are our model parameters. We take AdS/QCD scale parameter κ ¼ 0.4 GeV [15]. The values of the model
parameters a, b, and the normalization constant Ng are fixed by fitting the gluon unpolarized PDF at the scale Q0 ¼ 2 GeV
with NNPDF3.0 data. For the stability of the proton, the spectator mass, MX is considered higher than the proton mass,
i.e., MX > M.

III. GLUON TMDs

In the light front formalism, the unintegrated gluon correlation function for leading twist gluon TMDs in the SIDIS
process is given by the following relation [77]:

Φg½ij&ðx;p⊥; SÞ ¼
1

xPþ

Z
dξ−

2π
d2ξ⊥
ð2πÞ2

eik·ξhP; SjFþj
a ð0ÞWþ∞;abð0; ξÞFþi

b ðξÞjP;Si
####
ξþ¼0þ

; ð5Þ

where Fμν is the gluon field strength tensor and Wþ∞;ab is
the Wilson line that ensures the correlator to be gauge
invariant. The subscript “þ” specifies that the Wilson line
in the correlator operator expression is future-pointing,

which is necessary for SIDIS TMD distributions. There
are eight leading twist gluon TMDs out of which four of
them are T-even (fg1, g

g
1L, g

g
1T , and h⊥g

1 ) and the remaining
four are T-odd (f⊥g

1T ; h
⊥g
1L ; h

g
1T; h

⊥g
1T ) [1,77]. The twist-2
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Chiral even gluon TMDs:

•  

•  

•

chiral-even gluon TMDs are defined through the
correlator (5) as [1]

Φgðx;p⊥; SÞ ¼ δijTΦg½ij%ðx;p⊥; SÞ

¼ fg1ðx;p2
⊥Þ −

ϵij⊥p
i
⊥S

j
⊥

M
f⊥g
1T ðx;p2

⊥Þ; ð6Þ

and,

Φ̃gðx;p⊥; SÞ ¼ iϵijTΦg½ij%ðx;p⊥; SÞ

¼ λgg1Lðx;p2
⊥Þ þ

p⊥ · S⊥
M

gg1Tðx;p2
⊥Þ; ð7Þ

where δijT ¼ −gij and ϵijT ¼ ϵ−þij. Similarly, the chiral-odd
gluon transverse momentum dependent distributions are
obtained by using the symmetry operator Ŝ, which is

defined as ŜOij ¼ 1=2ðOij þOji − δijTO
mmÞ for a general

tensor Oij. Then,

Φg;ij
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Using the above Eqs. (6)–(8), one can compute all the
T-even TMDs. The unpolarized TMD, fg1ðx;p2

⊥Þ is defined
as the overlap representation of the proton light-front wave
functions as [93]
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⊥Þ ¼ −
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16π3
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After employing the light-front wave functions, Eqs. (2) and (3) in the above Eq. (9), we obtain the gluon unpolarized
TMD as,

fg1ðx;p2
⊥Þ ¼ N2

g
2

πκ2
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x
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where AðxÞ, BðxÞ and CðxÞ are given by

AðxÞ ¼
!
M −

MX

ð1 − xÞ

"
2

; BðxÞ ¼ 1þ ð1 − xÞ2

x2ð1 − xÞ2
and CðxÞ ¼ log½1=ð1 − xÞ%

κ2x2
: ð11Þ

Similarly, the gluon helicity TMD gg1Lðx;p2
⊥Þ, which describes the distribution of a circularly polarized gluon in a

longitudinally polarized proton, is defined as,
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The analytical expression for the gluon helicity TMD in our model is obtained as,

gg1Lðx;p2⊥Þ ¼ N2
g

2

πκ2
log½1=ð1 − xÞ%

x
x2bð1 − xÞ2a½AðxÞ þ p2⊥B̃ðxÞ% exp½−CðxÞp2⊥%; ð13Þ
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correlator (5) as [1]

Φgðx;p⊥; SÞ ¼ δijTΦg½ij%ðx;p⊥; SÞ
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and,

Φ̃gðx;p⊥; SÞ ¼ iϵijTΦg½ij%ðx;p⊥; SÞ

¼ λgg1Lðx;p2
⊥Þ þ

p⊥ · S⊥
M

gg1Tðx;p2
⊥Þ; ð7Þ

where δijT ¼ −gij and ϵijT ¼ ϵ−þij. Similarly, the chiral-odd
gluon transverse momentum dependent distributions are
obtained by using the symmetry operator Ŝ, which is

defined as ŜOij ¼ 1=2ðOij þOji − δijTO
mmÞ for a general

tensor Oij. Then,
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Using the above Eqs. (6)–(8), one can compute all the
T-even TMDs. The unpolarized TMD, fg1ðx;p2

⊥Þ is defined
as the overlap representation of the proton light-front wave
functions as [93]
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⊥Þ ¼ −
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i
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After employing the light-front wave functions, Eqs. (2) and (3) in the above Eq. (9), we obtain the gluon unpolarized
TMD as,
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⊥Þ ¼ N2

g
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x
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where AðxÞ, BðxÞ and CðxÞ are given by
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MX

ð1 − xÞ

"
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; BðxÞ ¼ 1þ ð1 − xÞ2
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and CðxÞ ¼ log½1=ð1 − xÞ%

κ2x2
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Similarly, the gluon helicity TMD gg1Lðx;p2
⊥Þ, which describes the distribution of a circularly polarized gluon in a

longitudinally polarized proton, is defined as,
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⊥Þj2

i
: ð12Þ

The analytical expression for the gluon helicity TMD in our model is obtained as,

gg1Lðx;p2⊥Þ ¼ N2
g
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πκ2
log½1=ð1 − xÞ%

x
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Chiral even TMDs     :

jP;↑ð↓Þi ¼
Z

d2p⊥dx
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ
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2
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where ψ↑ð↓Þ
λgλX

ðx;p⊥Þ are the LFWFs corresponding to the
two-particle state jλg; λX; xPþ;p⊥i with proton helicities
λp ¼ ↑ð↓Þ. Here, λg and λX stand for the helicity compo-
nents of the constituent gluon and spectator, respectively.
Our proposal for the light-front wave functions in

Eq. (1) is inspired by the wave function of the physical
electron [36], which is made up of a spin-1 photon and a
spin-12 electron. We argue that the light-front wave functions
for the Fock-state expansion for a proton with Jz ¼ þ1=2
have the following form:

ψ↑
þ1þ1

2
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x
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ψ↑
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2

ðx;p⊥Þ ¼ 0; ð2Þ

where M and MX represent the masses of the proton and
spectator, respectively. φðx;p2

⊥Þ is the modified form of the

soft-wall AdS/QCD wave function [91] modeled by intro-
ducing the parameters a and b. Similarly, the light-front
wave functions for the proton with Jz ¼ −1=2 have the
form

ψ↓
þ1þ1

2
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⊥ þ ip2
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φðx;p2
⊥Þ: ð3Þ

The behavior at x → 0, as well as the counting rules at
x → 1, provide information on the various gluon distribu-
tions [88,89]. To elaborate, the asymptotic behavior of the
PDFs at small x is adopted from the observed Regge
behavior in particle colliders, and the large-x behavior is
based on the power counting rules for hard scattering [89].
Keeping all these in mind, we have modified the soft wall
AdS-QCD wave function, φðx;p2

⊥Þ, The complete form of
the modified soft-wall AdS/QCD wave function is given by,

φðx;p2⊥Þ ¼ Ng
4π
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log½1=ð1 − xÞ&

x

r
xbð1 − xÞa exp

"
− log½1=ð1 − xÞ&

2κ2x2
p2⊥

%
: ð4Þ

where a and b are our model parameters. We take AdS/QCD scale parameter κ ¼ 0.4 GeV [15]. The values of the model
parameters a, b, and the normalization constant Ng are fixed by fitting the gluon unpolarized PDF at the scale Q0 ¼ 2 GeV
with NNPDF3.0 data. For the stability of the proton, the spectator mass, MX is considered higher than the proton mass,
i.e., MX > M.

III. GLUON TMDs

In the light front formalism, the unintegrated gluon correlation function for leading twist gluon TMDs in the SIDIS
process is given by the following relation [77]:

Φg½ij&ðx;p⊥; SÞ ¼
1

xPþ

Z
dξ−

2π
d2ξ⊥
ð2πÞ2

eik·ξhP; SjFþj
a ð0ÞWþ∞;abð0; ξÞFþi

b ðξÞjP;Si
####
ξþ¼0þ

; ð5Þ

where Fμν is the gluon field strength tensor and Wþ∞;ab is
the Wilson line that ensures the correlator to be gauge
invariant. The subscript “þ” specifies that the Wilson line
in the correlator operator expression is future-pointing,

which is necessary for SIDIS TMD distributions. There
are eight leading twist gluon TMDs out of which four of
them are T-even (fg1, g

g
1L, g

g
1T , and h⊥g

1 ) and the remaining
four are T-odd (f⊥g

1T ; h
⊥g
1L ; h

g
1T; h

⊥g
1T ) [1,77]. The twist-2
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Chiral odd gluon TMDs:

•  

•

chiral-even gluon TMDs are defined through the
correlator (5) as [1]

Φgðx;p⊥; SÞ ¼ δijTΦg½ij%ðx;p⊥; SÞ

¼ fg1ðx;p2
⊥Þ −

ϵij⊥p
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⊥Þ; ð6Þ

and,

Φ̃gðx;p⊥; SÞ ¼ iϵijTΦg½ij%ðx;p⊥; SÞ

¼ λgg1Lðx;p2
⊥Þ þ

p⊥ · S⊥
M

gg1Tðx;p2
⊥Þ; ð7Þ

where δijT ¼ −gij and ϵijT ¼ ϵ−þij. Similarly, the chiral-odd
gluon transverse momentum dependent distributions are
obtained by using the symmetry operator Ŝ, which is

defined as ŜOij ¼ 1=2ðOij þOji − δijTO
mmÞ for a general

tensor Oij. Then,

Φg;ij
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Using the above Eqs. (6)–(8), one can compute all the
T-even TMDs. The unpolarized TMD, fg1ðx;p2

⊥Þ is defined
as the overlap representation of the proton light-front wave
functions as [93]

fg1ðx;p2
⊥Þ ¼ −
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−1þ1=2ðx;p2
⊥Þj2

i
: ð9Þ

After employing the light-front wave functions, Eqs. (2) and (3) in the above Eq. (9), we obtain the gluon unpolarized
TMD as,

fg1ðx;p2
⊥Þ ¼ N2

g
2

πκ2
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x
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where AðxÞ, BðxÞ and CðxÞ are given by

AðxÞ ¼
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MX
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"
2

; BðxÞ ¼ 1þ ð1 − xÞ2
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and CðxÞ ¼ log½1=ð1 − xÞ%
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Similarly, the gluon helicity TMD gg1Lðx;p2
⊥Þ, which describes the distribution of a circularly polarized gluon in a

longitudinally polarized proton, is defined as,

gg1Lðx;p2⊥Þ ¼ −
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þ1−1=2ðx;p2
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i
: ð12Þ

The analytical expression for the gluon helicity TMD in our model is obtained as,

gg1Lðx;p2⊥Þ ¼ N2
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jP;↑ð↓Þi ¼
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d2p⊥dx
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where ψ↑ð↓Þ
λgλX

ðx;p⊥Þ are the LFWFs corresponding to the
two-particle state jλg; λX; xPþ;p⊥i with proton helicities
λp ¼ ↑ð↓Þ. Here, λg and λX stand for the helicity compo-
nents of the constituent gluon and spectator, respectively.
Our proposal for the light-front wave functions in

Eq. (1) is inspired by the wave function of the physical
electron [36], which is made up of a spin-1 photon and a
spin-12 electron. We argue that the light-front wave functions
for the Fock-state expansion for a proton with Jz ¼ þ1=2
have the following form:

ψ↑
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ffiffiffi
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where M and MX represent the masses of the proton and
spectator, respectively. φðx;p2

⊥Þ is the modified form of the

soft-wall AdS/QCD wave function [91] modeled by intro-
ducing the parameters a and b. Similarly, the light-front
wave functions for the proton with Jz ¼ −1=2 have the
form

ψ↓
þ1þ1

2

ðx;p⊥Þ ¼ 0;
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The behavior at x → 0, as well as the counting rules at
x → 1, provide information on the various gluon distribu-
tions [88,89]. To elaborate, the asymptotic behavior of the
PDFs at small x is adopted from the observed Regge
behavior in particle colliders, and the large-x behavior is
based on the power counting rules for hard scattering [89].
Keeping all these in mind, we have modified the soft wall
AdS-QCD wave function, φðx;p2

⊥Þ, The complete form of
the modified soft-wall AdS/QCD wave function is given by,

φðx;p2⊥Þ ¼ Ng
4π
κ
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where a and b are our model parameters. We take AdS/QCD scale parameter κ ¼ 0.4 GeV [15]. The values of the model
parameters a, b, and the normalization constant Ng are fixed by fitting the gluon unpolarized PDF at the scale Q0 ¼ 2 GeV
with NNPDF3.0 data. For the stability of the proton, the spectator mass, MX is considered higher than the proton mass,
i.e., MX > M.

III. GLUON TMDs

In the light front formalism, the unintegrated gluon correlation function for leading twist gluon TMDs in the SIDIS
process is given by the following relation [77]:

Φg½ij&ðx;p⊥; SÞ ¼
1
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Z
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eik·ξhP; SjFþj
a ð0ÞWþ∞;abð0; ξÞFþi

b ðξÞjP;Si
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ξþ¼0þ
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where Fμν is the gluon field strength tensor and Wþ∞;ab is
the Wilson line that ensures the correlator to be gauge
invariant. The subscript “þ” specifies that the Wilson line
in the correlator operator expression is future-pointing,

which is necessary for SIDIS TMD distributions. There
are eight leading twist gluon TMDs out of which four of
them are T-even (fg1, g

g
1L, g

g
1T , and h⊥g

1 ) and the remaining
four are T-odd (f⊥g

1T ; h
⊥g
1L ; h

g
1T; h

⊥g
1T ) [1,77]. The twist-2
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Unpolarised TMD  fg
1 (x, p2

⊥)
•  overlap representation of light front wave functions:        

•      
• With our wave functions we get: 

 

• When integrated over the transverse momentum, it reduces to the unpolarised pdf 
.

chiral-even gluon TMDs are defined through the
correlator (5) as [1]
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and,
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where δijT ¼ −gij and ϵijT ¼ ϵ−þij. Similarly, the chiral-odd
gluon transverse momentum dependent distributions are
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Using the above Eqs. (6)–(8), one can compute all the
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¼ −ŜΦg½ij%ðx;p⊥; SÞ

¼ −
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where AðxÞ, CðxÞ are same as (11), while B̃ðxÞ is given as
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The worm-gear gluon TMD gg1Tðx;p2
⊥Þ is defined as the distribution of a circularly polarized gluon in a transversely

polarized proton [86] and given by,
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Using the soft-wall AdS/QCD wave function (4), the above equation can be written as,
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½φðx;p2

⊥Þ'2;

h⊥g
1 ðx;p2

⊥Þ ¼
8M2

πκ2
N2

g log½1=ð1 − xÞ'x2b−3ð1 − xÞ2a−1 exp½−CðxÞp2
⊥': ð17Þ

where we used ημνT ¼ gμνT þ 2pμ
⊥p

ν
⊥=p

2
⊥. After performing the p⊥-integration of the gluon unpolarized TMD, Eq. (10),

we obtain the corresponding collinear unpolarized PDF, fg1ðxÞ as,

fg1ðxÞ ¼
Z

d2p⊥f
g
1ðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1þ ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð18Þ

The gluon helicity PDF gg1LðxÞ can be obtained after the p⊥-integration of the gluon helicity TMD in Eq. (13) as,

gg1LðxÞ ¼
Z

d2p⊥g
g
1Lðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1 − ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð19Þ
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where AðxÞ, CðxÞ are same as (11), while B̃ðxÞ is given as

B̃ðxÞ ¼ 1 − ð1 − xÞ2

x2ð1 − xÞ2
: ð14Þ

The worm-gear gluon TMD gg1Tðx;p2
⊥Þ is defined as the distribution of a circularly polarized gluon in a transversely

polarized proton [86] and given by,

p⊥:S⊥
M

gg1Tðx;p2
⊥Þ ¼ −

1

16π3
iϵμνT

X

λgλ0gλX

ϵ
λ0g$
μ ϵ

λg
ν ψ

↑$
λ0gλX

ðx;p2
⊥Þψ

↓
λgλX

ðx;p2
⊥Þ

¼ 1

16π3
i
2

X

λgλ0gλX

ðϵλ
0
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1 ϵ
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2 − ϵ

λ0g$
2 ϵ

λg
1 Þ½ψ

↑$
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ðx;p2⊥Þψ
↓
λgλX

ðx;p2⊥Þ þ ψ↓$
λ0gλX

ðx;p2⊥Þψ
↑
λgλX

ðx;p2⊥Þ'

gg1Tðx;p2
⊥Þ ¼ −

4M
16π3x

!
M −

MX

ð1 − xÞ

"
½φðx;p2

⊥Þ'2: ð15Þ

Using the soft-wall AdS/QCD wave function (4), the above equation can be written as,

gg1Tðx;p2
⊥Þ ¼ −

4M
πκ2

N2
gðMð1 − xÞ −MXÞ log½1=ð1 − xÞ'x2b−2ð1 − xÞ2a−1 exp½−CðxÞp2

⊥': ð16Þ

Finally, The Boer-Mulders gluon TMD h⊥g
1 ðx;p2

⊥Þ, which describes a linearly polarized gluon inside an unpolarized proton,
is given as,

p2
⊥

2M2
h⊥g
1 ðx;p2

⊥Þ ¼
1

2
ημνT

X

λNλg≠λ0gλX

1

16π3

h
ϵ
λ0g$
μ ϵ

λg
ν ψ

$λN
λ0gλX

ðx;p⊥Þψ
λN
λgλX

ðx;p⊥Þ
i
;

h⊥g
1 ðx;p2

⊥Þ ¼ −
1

16π3
M2

p4
⊥

X

λNλX

h
ðp1 − ip2Þ2ψ$λN

þ1λX
ðx;p⊥Þψ

λN
−1λXðx;p⊥Þ þ ðp1 þ ip2Þ2ψ$λN

−1λXðx;p⊥Þψ
λN
þ1λX

ðx;p⊥Þ
i

¼ 8M2

16π3
1

x2ð1 − xÞ
½φðx;p2

⊥Þ'2;

h⊥g
1 ðx;p2

⊥Þ ¼
8M2

πκ2
N2

g log½1=ð1 − xÞ'x2b−3ð1 − xÞ2a−1 exp½−CðxÞp2
⊥': ð17Þ

where we used ημνT ¼ gμνT þ 2pμ
⊥p

ν
⊥=p

2
⊥. After performing the p⊥-integration of the gluon unpolarized TMD, Eq. (10),

we obtain the corresponding collinear unpolarized PDF, fg1ðxÞ as,

fg1ðxÞ ¼
Z

d2p⊥f
g
1ðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1þ ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð18Þ

The gluon helicity PDF gg1LðxÞ can be obtained after the p⊥-integration of the gluon helicity TMD in Eq. (13) as,

gg1LðxÞ ¼
Z

d2p⊥g
g
1Lðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1 − ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð19Þ
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= N2
g

2ln[1/(1 − x)]
πκ2x

x2b(1 − x)2a[(M −
MX

1 − x )2 + p2
⊥

1 − (1 − x)2

x2(1 − x)2 ]exp[−C(x)p2
⊥]

chiral-even gluon TMDs are defined through the
correlator (5) as [1]

Φgðx;p⊥; SÞ ¼ δijTΦg½ij%ðx;p⊥; SÞ

¼ fg1ðx;p2
⊥Þ −

ϵij⊥p
i
⊥S

j
⊥

M
f⊥g
1T ðx;p2

⊥Þ; ð6Þ

and,

Φ̃gðx;p⊥; SÞ ¼ iϵijTΦg½ij%ðx;p⊥; SÞ

¼ λgg1Lðx;p2
⊥Þ þ

p⊥ · S⊥
M

gg1Tðx;p2
⊥Þ; ð7Þ

where δijT ¼ −gij and ϵijT ¼ ϵ−þij. Similarly, the chiral-odd
gluon transverse momentum dependent distributions are
obtained by using the symmetry operator Ŝ, which is

defined as ŜOij ¼ 1=2ðOij þOji − δijTO
mmÞ for a general

tensor Oij. Then,

Φg;ij
T ðx;p⊥; SÞ

¼ −ŜΦg½ij%ðx;p⊥; SÞ

¼ −
Ŝpi

⊥p
j
⊥

2M2
h⊥g
1 ðx;p2

⊥Þ þ
λŜpi

⊥ϵ
jk
⊥p

k
⊥

2M2
h⊥g
1Lðx;p2

⊥Þ

þ Ŝpi
⊥ϵ

jk
⊥S

k
⊥

2M

!
hg1Tðx;p2⊥Þ þ

p2
⊥

2M2
h⊥g
1T ðx;p2⊥Þ

"

þ Ŝpi
⊥ϵ

jk
⊥ ð2pk

⊥p⊥:S⊥ − Sk⊥p
2
⊥Þ

4M3
h⊥g
1T ðx;p2

⊥Þ: ð8Þ

Using the above Eqs. (6)–(8), one can compute all the
T-even TMDs. The unpolarized TMD, fg1ðx;p2

⊥Þ is defined
as the overlap representation of the proton light-front wave
functions as [93]

fg1ðx;p2
⊥Þ ¼ −

1

16π3
gμνT

X

λgλ0gλX

ϵ
λ0g'
μ ϵ

λg
ν ψ

↑'
λ0gλX

ðx;p2
⊥Þψ

↑
λgλX

ðx;p2
⊥Þ

¼ 1

16π3
X

λgλ0gλX

ðϵλ
0
g'
1 ϵ

λg
1 þ ϵ

λ0g'
2 ϵ

λg
2 Þψ

↑'
λ0gλX

ðx;p2
⊥Þψ

↑
λgλX

ðx;p2
⊥Þ

¼ 1

16π3

h
jψ↑

þ1þ1=2ðx;p2
⊥Þj2 þ jψ↑

þ1−1=2ðx;p2
⊥Þj2 þ jψ↑

−1þ1=2ðx;p2
⊥Þj2

i
: ð9Þ

After employing the light-front wave functions, Eqs. (2) and (3) in the above Eq. (9), we obtain the gluon unpolarized
TMD as,

fg1ðx;p2
⊥Þ ¼ N2

g
2

πκ2
log½1=ð1 − xÞ%

x
x2bð1 − xÞ2a½AðxÞ þ p2

⊥BðxÞ% exp½−CðxÞp2
⊥%; ð10Þ

where AðxÞ, BðxÞ and CðxÞ are given by

AðxÞ ¼
!
M −

MX

ð1 − xÞ

"
2

; BðxÞ ¼ 1þ ð1 − xÞ2

x2ð1 − xÞ2
and CðxÞ ¼ log½1=ð1 − xÞ%

κ2x2
: ð11Þ

Similarly, the gluon helicity TMD gg1Lðx;p2
⊥Þ, which describes the distribution of a circularly polarized gluon in a

longitudinally polarized proton, is defined as,

gg1Lðx;p2⊥Þ ¼ −
1

16π3
iϵμνT

X

λgλ0gλX

ϵ
λ0g'
μ ϵ

λg
ν ψ

↑'
λ0gλX

ðx;p2⊥Þψ
↑
λgλX

ðx;p2⊥Þ

¼ 1

16π3
i
X

λgλ0gλX

ðϵλ
0
g'
2 ϵ

λg
1 − ϵ

λ0g'
1 ϵ

λg
2 Þψ

↑'
λ0gλX

ðx;p2
⊥Þψ

↑
λgλX

ðx;p2
⊥Þ

¼ 1

16π3

h
jψ↑

þ1þ1=2ðx;p2
⊥Þj2 þ jψ↑

þ1−1=2ðx;p2
⊥Þj2 − jψ↑

−1þ1=2ðx;p2
⊥Þj2

i
: ð12Þ

The analytical expression for the gluon helicity TMD in our model is obtained as,

gg1Lðx;p2⊥Þ ¼ N2
g

2

πκ2
log½1=ð1 − xÞ%

x
x2bð1 − xÞ2a½AðxÞ þ p2⊥B̃ðxÞ% exp½−CðxÞp2⊥%; ð13Þ
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• Boer-Mulders TMD: linearly polarized gluon inside unpolarised proton [interference between 
 gluon helicities] 
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where AðxÞ, CðxÞ are same as (11), while B̃ðxÞ is given as

B̃ðxÞ ¼ 1 − ð1 − xÞ2

x2ð1 − xÞ2
: ð14Þ

The worm-gear gluon TMD gg1Tðx;p2
⊥Þ is defined as the distribution of a circularly polarized gluon in a transversely

polarized proton [86] and given by,

p⊥:S⊥
M
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⊥Þ ¼ −
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4M
16π3x

!
M −
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"
½φðx;p2

⊥Þ'2: ð15Þ

Using the soft-wall AdS/QCD wave function (4), the above equation can be written as,

gg1Tðx;p2
⊥Þ ¼ −

4M
πκ2

N2
gðMð1 − xÞ −MXÞ log½1=ð1 − xÞ'x2b−2ð1 − xÞ2a−1 exp½−CðxÞp2

⊥': ð16Þ

Finally, The Boer-Mulders gluon TMD h⊥g
1 ðx;p2

⊥Þ, which describes a linearly polarized gluon inside an unpolarized proton,
is given as,

p2
⊥

2M2
h⊥g
1 ðx;p2

⊥Þ ¼
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⊥Þ ¼
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πκ2
N2

g log½1=ð1 − xÞ'x2b−3ð1 − xÞ2a−1 exp½−CðxÞp2
⊥': ð17Þ

where we used ημνT ¼ gμνT þ 2pμ
⊥p

ν
⊥=p

2
⊥. After performing the p⊥-integration of the gluon unpolarized TMD, Eq. (10),

we obtain the corresponding collinear unpolarized PDF, fg1ðxÞ as,

fg1ðxÞ ¼
Z

d2p⊥f
g
1ðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1þ ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð18Þ

The gluon helicity PDF gg1LðxÞ can be obtained after the p⊥-integration of the gluon helicity TMD in Eq. (13) as,

gg1LðxÞ ¼
Z

d2p⊥g
g
1Lðx;p2

⊥Þ

¼ 2N2
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#
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$
: ð19Þ
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where AðxÞ, CðxÞ are same as (11), while B̃ðxÞ is given as

B̃ðxÞ ¼ 1 − ð1 − xÞ2

x2ð1 − xÞ2
: ð14Þ

The worm-gear gluon TMD gg1Tðx;p2
⊥Þ is defined as the distribution of a circularly polarized gluon in a transversely

polarized proton [86] and given by,
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Using the soft-wall AdS/QCD wave function (4), the above equation can be written as,
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⊥': ð16Þ

Finally, The Boer-Mulders gluon TMD h⊥g
1 ðx;p2

⊥Þ, which describes a linearly polarized gluon inside an unpolarized proton,
is given as,
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;
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i
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⊥Þ ¼
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πκ2
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g log½1=ð1 − xÞ'x2b−3ð1 − xÞ2a−1 exp½−CðxÞp2
⊥': ð17Þ

where we used ημνT ¼ gμνT þ 2pμ
⊥p

ν
⊥=p

2
⊥. After performing the p⊥-integration of the gluon unpolarized TMD, Eq. (10),

we obtain the corresponding collinear unpolarized PDF, fg1ðxÞ as,

fg1ðxÞ ¼
Z

d2p⊥f
g
1ðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
κ2

ð1þ ð1 − xÞ2Þ
log½1=ð1 − xÞ'

þ ðMð1 − xÞ −MXÞ2
$
: ð18Þ

The gluon helicity PDF gg1LðxÞ can be obtained after the p⊥-integration of the gluon helicity TMD in Eq. (13) as,

gg1LðxÞ ¼
Z

d2p⊥g
g
1Lðx;p2

⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

#
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Similarly, the collinear PDFs of worm-gear, Eq. (16), and
the Boer-Mulders, Eq. (17), TMDs are given as,

gg1TðxÞ ¼
Z

d2p⊥g
g
1Tðx;p2

⊥Þ

¼ −4MN2
gðMð1 − xÞ −MXÞx2bð1 − xÞ2a−1; ð20Þ

and,

h⊥g
1 ðxÞ ¼

Z
d2p⊥h

⊥g
1 ðx;p2

⊥Þ

¼ 8M2N2
gx2b−1ð1 − xÞ2a−1: ð21Þ

IV. NUMERICAL FITTING AND MODEL
PARAMETERS

There are four parameters a, b, Ng, andMX in our model,
which will decide the goodness of the model. The parameters
Ng and MX are free parameters and they are fixed by
normalization conditions of the gluon PDFs and spectator
mass properties of the proton, respectively. The parameters a
and b decide the behavior of the distributions in extreme
limits of x are crucial to fix. We determine these model
parameters, by fitting our unpolarized gluon distribution
with the latest available gluon PDF data at NLO of the gluon
distribution xfg1ðxÞ from the global analysis by the NNPDF
Collaboration [39]. We particularly fit NNPDF3.0 NLO
unpolarized gluon distribution at the scaleQ0 ¼ 2 GeV. We
choose 300 data points within the interval 0.001 < x < 1
and 100 replicas of the gluon distribution. The effective
uncertainties are calculated from the standard deviation of
these 100 replicas for each value of xi.
We set the gluon mass Mg ¼ 0. The choice of model

parameters a and b depend on the spectator mass. During the
search for the optimal fit, we find that for spectator mass
close to the proton mass, the model parameters produce a
more physically acceptable spin contribution of the gluon
than for larger spectator mass. Here, we choose MX ¼
0.985 GeV. In a similar kind of spectator model, the
spectator mass has been chosen as MX ¼ 0.943 GeV [81].
The model is very sensitive in the small x region. Even in the
NNPDF analysis, the polarized PDF has large uncertainty in
the small-x region, which makes the spin contribution
prediction sensitive to the lower limit of x. Keeping all of
this in mind, we exclude a very small x region from our
fitting and our model is valid for the range 0.001 < x < 1.
The value of the fitted model parameters is listed in

Table I. These model parameters are fixed by fitting the
NNPDF3.0 NLO dataset at Q0 ¼ 2 GeV with a χ2min ¼
20.37 with the normalization constant Ng ¼ 2.088. We
notice that the 2σ uncertainty to the parameter fitting is
close to the experimental error corridor, and we take 2σ
uncertainty as a standard maximized error in this model for

further reporting. The parameters in the wave functions
determined by the fitting of unpolarized gluon PDF can be
further employed to predict the other gluon distributions e.g.,
gluon helicity, transversity, TMDs etc. In Fig. 1, we show the
results of our fit for the unpolarized gluon distribution
xfg1ðxÞ at Q0 ¼ 2 GeV. The solid magenta band identifies
the NNPDF3.0 parametrization of xfg1ðxÞ [94] and the
blue-dashed line with the blue band shows our model results
at 2σ error corridor.

V. RESULTS

The value of the average longitudinal momentum of the
gluon is defined as the second Mellin’s moment of the
unpolarized PDF as,

hxig ¼
Z

1

0.001
dxxfg1ðxÞ ¼ 0.416þ0.048

−0.041 ; ð22Þ

which is close to the recent lattice calculations at
Q2

0 ¼ 4 GeV2, hxig ¼ 0.427ð92Þ [95]. In Table II, we
compared the average value of the longitudinal momentum
fraction for the unpolarized gluon PDF with the available
theoretical models in the literature [80,81,86,96].
In Fig. 2, we show our model predictions for the
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,

fg1ðx;p2
⊥Þ, g

g
1Lðx;p2

⊥Þ, g
g
1Tðx;p2

⊥Þ, and h⊥g
1 ðx;p2

⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,

xρ↔g ðx; px; pyÞ ¼
1

2

!
xfg1ðx;p2⊥Þ þ

p2
x − p2

y

2M2
xh⊥g

1 ðx;p2⊥Þ
"

ð25Þ

Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
⊥Þ& ð26Þ

Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þ−
px

M
xgg1Tðx;p2

⊥Þ& ð27Þ

We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
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⊥ as compared
to the other theoretical predictions [80,86,96].
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since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,
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Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
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Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,
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We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px
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1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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Gluon TMDs: 

•                          

direction. The worm-gear density involves a transversely
polarized proton along the þpx axes. Hence it is asym-
metrically distributed in the same direction. In Fig. 6
we show the contour plots for the p⊥-distribution of the
densities at x ¼ 0.1. The upper left panel shows the
unpolarized density, ρg which is cylindrically symmetric
in the px and py directions followed by the ancillary 1D
plots which represents the corresponding density at
py ¼ 0. The upper right panel represents the BM density,
ρ↔ which shows a quadrupole structure. The lower left
panel presents the gluon helicity density, ρ↺=þ which is
perfectly symmetric in the transverse plane because it
describes a proton (gluon) longitudinally (circularly)

polarized along the direction of motion pointing toward
the reader. The lower right panel represents the worm-
gear density, ρ↺=↔ which is slightly asymmetric in px at
x ¼ 0.1 because the proton is transversely polarized along
the px-direction. The color code identifies the size of the
oscillation of each density along the px and py directions.

A. Relations between TMDs

The gluon TMDs are very sensitive to x. The TMDs and
their relations among them could be separated into small
and large x regions. Depending upon the applicability of
the model these relations can be checked only in certain
ranges of x. The leading twist TMDs in this model also

FIG. 4. The TMDs for the gluon as functions of x and p2⊥. Upper panel: The unpolarized gluon TMD, fg1ðx;p2⊥Þ (left), The gluon
helicity TMD, gg1Lðx;p2

⊥Þ (right panel). Lower panel: The worm-gear TMD, gg1Tðx;p2
⊥Þ (left) and the Boer-Mulders TMD,

h⊥g
1 ðx;p2⊥Þ (right).
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For x=0.1
satisfy the inequality relations, which are valid in QCD and
all models [79,86], e.g., positivity bound, which is the most
known model-independent relation. According to which
the unpolarized TMD fg1ðx;p2

⊥Þ should be always positive
and larger than the polarized one [77] i.e.,

fg1ðx;p2⊥Þ > 0; fg1ðx;p2⊥Þ ≥ jgg1Lðx;p2⊥Þj: ð28Þ

and,

fg1ðx;p2
⊥Þ ≥

jp⊥j
M

jgg1Tðx;p2
⊥Þj;

fg1ðx;p2
⊥Þ ≥

jp⊥j2

2M2
jh⊥g

1 ðx;p2
⊥Þj: ð29Þ

Apart from these relations, there are several relations
among TMDs themselves. The Mulders-Rodrigues rela-
tions for unpolarized and the polarized TMDs [77] are more
stringent conditions than the above positivity bounds and
are satisfied in our model:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½gg1Lðx;p2⊥Þ$2 þ
"
jp⊥j
M

gg1Tðx;p2⊥Þ
#
2

s

≤ fg1ðx;p2⊥Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½gg1Lðx;p2
⊥Þ$2 þ

"
p2⊥
2M2

h⊥g
1 ðx;p2

⊥Þ
#
2

s

≤ fg1ðx;p2
⊥Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
jp⊥j
M

gg1Tðx;p2
⊥Þ
#
2

þ
"
p2
⊥

2M2
h⊥g
1 ðx;p2

⊥Þ
#
2

s

≤ fg1ðx;p2
⊥Þ:

ð30Þ

The positivity bounds Eqs. (28) and (29) can be derived as
limiting cases of Eq. (30).
An interesting sum rule has been derived in Ref. [86]

involving the T-even TMDs, by expressing them in terms of
overlaps of LFWFs. This can be expressed as:

½fg1ðx;p2
⊥Þ$2 ¼ ½gg1Lðx;p2

⊥Þ$2 þ
"
jp⊥j
M

gg1Tðx;p2
⊥Þ
#
2

þ
"
p2
⊥

2M2
h⊥g
1 ðx;p2

⊥Þ
#
2

; ð31Þ

FIG. 5. The T-even TMDs as a function of p2
⊥ for x ¼ 0.1. Upper panel: the unpolarized gluon TMD, xfg1ðx;p2

⊥Þ (left), The helicity
TMD, xgg1Lðx;p2

⊥Þ (right). Lower panel: the worm-gear TMD, gg1Tðx;p2
⊥Þ (left) and the Boer-Mulders TMD, h⊥g

1 ðx;p2
⊥Þ (right),

respectively.
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TMD relations:

• Positivity bound:                       

•                                                               
•  Mulders-Rodrigues relations put  more stringent conditions on TMDS: 

•
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Positivity bound

the positivity bound saturates only for the small x-values,
for large x-values the positivity inequality is satisfied in the
whole range of p⊥. Saturation of the positivity bound for
gluon TMDs in a spectator model in the certain kinematical
region has been reported in Ref. [102]. Note that all the
relations listed above are independent of the parameters of
our model.

VI. CONCLUSION

We have proposed a light-front spectator model with the
light-front wave functions modeled from the soft-wall
holographic AdS/QCD prediction for two-body bound

states. In this simple model, proton is assumed to consist
of a struck gluon and a spin-1=2 spectator. We fixed our
model parameters by fitting the unpolarized gluon PDF,
fg1ðxÞ with the NNPDF3.0nlo global analysis. The helicity
PDF and other T-even TMDs are calculated as predictions
of the model and are shown to satisfy the positivity bound
and have in good agreement with the available model
predictions. The model is found to satisfy the constraints
imposed by QCD including counting rules at small and
large x. We have demonstrated that the gluon TMDs obey
the model-independent Mulders-Rodrigues inequalities.
We have also shown in this model that the superposition
of the squares of all polarized T-even TMDs is equal to
the square of the unpolarized TMD. We verified that this
sum rule is also followed in similar models. It will be
interesting to study the other proton properties like GPDs,
T-odd TMDs, Wigner distributions, GTMDs, etc., and
their scale evolutions in this model, and to compare with
other model predictions, which can be helpful for the
upcoming EICs.
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Gluon densities
• Unpolarised gluon density in an unpolarised proton = 

probability of finding the gluon with momentumm ( ) 

•   

x, p⊥

results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,

fg1ðx;p2
⊥Þ, g

g
1Lðx;p2

⊥Þ, g
g
1Tðx;p2

⊥Þ, and h⊥g
1 ðx;p2

⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,

xρ↔g ðx; px; pyÞ ¼
1

2

!
xfg1ðx;p2⊥Þ þ

p2
x − p2

y

2M2
xh⊥g

1 ðx;p2⊥Þ
"

ð25Þ

Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
⊥Þ& ð26Þ

Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þ−
px

M
xgg1Tðx;p2

⊥Þ& ð27Þ

We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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The above relation, Eq. (31), gives the connection between
the square of an unpolarized TMD and a combination of
squares of three polarized TMDs. In Fig. 7, we show the

ratio of Boer-Mulders to unpolarized TMDs weighted by
p2⊥=2M2 as a function of p⊥ for different values of the
gluon longitudinal momentum fraction x. We notice that

FIG. 6. Upper panel: unpolarized gluon density (left), Boer-Mulders gluon density (right) for a virtually moving unpolarized nucleon.
Lower panel: helicity gluon density (left) and worm-gear gluon density (right) for a polarized nucleon virtually moving toward
the reader. 1D ancillary plots for each contour plot indicate the density at py ¼ 0. All densities are represented as a function of
p⊥ ≡ ðpx; pyÞ at a constant x ¼ 0.1.
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,

fg1ðx;p2
⊥Þ, g

g
1Lðx;p2

⊥Þ, g
g
1Tðx;p2

⊥Þ, and h⊥g
1 ðx;p2

⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,

xρ↔g ðx; px; pyÞ ¼
1
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xfg1ðx;p2⊥Þ þ

p2
x − p2

y

2M2
xh⊥g

1 ðx;p2⊥Þ
"

ð25Þ

Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
⊥Þ& ð26Þ

Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þ−
px

M
xgg1Tðx;p2

⊥Þ& ð27Þ

We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,
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⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,
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Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
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Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þ−
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We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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The above relation, Eq. (31), gives the connection between
the square of an unpolarized TMD and a combination of
squares of three polarized TMDs. In Fig. 7, we show the

ratio of Boer-Mulders to unpolarized TMDs weighted by
p2⊥=2M2 as a function of p⊥ for different values of the
gluon longitudinal momentum fraction x. We notice that

FIG. 6. Upper panel: unpolarized gluon density (left), Boer-Mulders gluon density (right) for a virtually moving unpolarized nucleon.
Lower panel: helicity gluon density (left) and worm-gear gluon density (right) for a polarized nucleon virtually moving toward
the reader. 1D ancillary plots for each contour plot indicate the density at py ¼ 0. All densities are represented as a function of
p⊥ ≡ ðpx; pyÞ at a constant x ¼ 0.1.
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,
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⊥Þ, g
g
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⊥Þ, and h⊥g
1 ðx;p2

⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,

xρ↔g ðx; px; pyÞ ¼
1
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Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
⊥Þ& ð26Þ

Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þ−
px

M
xgg1Tðx;p2

⊥Þ& ð27Þ

We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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The above relation, Eq. (31), gives the connection between
the square of an unpolarized TMD and a combination of
squares of three polarized TMDs. In Fig. 7, we show the

ratio of Boer-Mulders to unpolarized TMDs weighted by
p2⊥=2M2 as a function of p⊥ for different values of the
gluon longitudinal momentum fraction x. We notice that

FIG. 6. Upper panel: unpolarized gluon density (left), Boer-Mulders gluon density (right) for a virtually moving unpolarized nucleon.
Lower panel: helicity gluon density (left) and worm-gear gluon density (right) for a polarized nucleon virtually moving toward
the reader. 1D ancillary plots for each contour plot indicate the density at py ¼ 0. All densities are represented as a function of
p⊥ ≡ ðpx; pyÞ at a constant x ¼ 0.1.
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,
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⊥Þ, g

g
1Lðx;p2

⊥Þ, g
g
1Tðx;p2

⊥Þ, and h⊥g
1 ðx;p2

⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,

xρ↔g ðx; px; pyÞ ¼
1

2

!
xfg1ðx;p2⊥Þ þ

p2
x − p2

y

2M2
xh⊥g

1 ðx;p2⊥Þ
"

ð25Þ

Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
⊥Þ& ð26Þ

Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þ−
px

M
xgg1Tðx;p2

⊥Þ& ð27Þ

We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,
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⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,
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Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
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Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1
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We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2

⊥Þ and ϕð2Þðx;p2
⊥Þ, which are

expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,
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⊥Þ, and h⊥g
1 ðx;p2

⊥Þ at the
scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2
⊥ at x ¼ 0.1. These distributions are found to be slightly

overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2

⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2
⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,
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Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2

⊥Þþxgg1Lðx;p2
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Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,
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We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2 from the corresponding definitions in
Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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The above relation, Eq. (31), gives the connection between
the square of an unpolarized TMD and a combination of
squares of three polarized TMDs. In Fig. 7, we show the

ratio of Boer-Mulders to unpolarized TMDs weighted by
p2⊥=2M2 as a function of p⊥ for different values of the
gluon longitudinal momentum fraction x. We notice that

FIG. 6. Upper panel: unpolarized gluon density (left), Boer-Mulders gluon density (right) for a virtually moving unpolarized nucleon.
Lower panel: helicity gluon density (left) and worm-gear gluon density (right) for a polarized nucleon virtually moving toward
the reader. 1D ancillary plots for each contour plot indicate the density at py ¼ 0. All densities are represented as a function of
p⊥ ≡ ðpx; pyÞ at a constant x ¼ 0.1.
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GPDs
• GPDs  appear in exclusive processes e.g., DVCS/ vector meson production 

• are off-forward matrix elements of the bilocal operator and functions of . 

•  encode spatial as well as spin structure of the nucleon. 

• don’t have probabilistic interpretation.  

• for skewness ,  in impact parameter space can have probabilistic 
interpretation. 

• In the forward limit GPDs —> PDFs.
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FIGURE 1. Comparison between Compton scattering (a) and form factors (b). The Compton amplitude
(handbag diagrams dominate for large virtualities of the virtual photon), involves a quark propagator
between the two photon vertices
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GPDs enter the DVCS amplitudeADVCS through convolution integrals

ADVCS ∼
∫ 1

−1
dx
GPD(x,ξ , t)
x−ξ + iε

, (3)

i.e. the imaginary part of the DVCS amplitude depends only on GPDs along the ‘diago-
nal’ x= ξ

ℑADVCS(ξ , t)∼ GPD(ξ ,ξ , t), (4)

while the real part also probes GPDs for x #= ξ

ℜADVCS(ξ , t)∼
∫ 1

−1
dx
GPD(x,ξ , t)

x−ξ
. (5)

Experimentally, the DVCS amplitude interferes with the Bethe-Heitler process (Fig.2)
and

σ = |ABH+ADVCS|
2 = |ABH |

2+ |ADVCS|
2+2ℜ{ABHA

∗
DVCS} (6)

whileℑADVCS(ξ , t) can be separated using the beam spin asymmetry, andℜADVCS(ξ , t)
from the angular dependence, the beam charge asymmetry (e+ v. e− or µ+ v. µ−) can
be used as an independent means to isolate the real part of the DVCS amplitude: the
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Gluon GPDs
• Since nonperturbative QCD evaluations are not yet feasible,  it is important to constraint 

the GPDs  by using different model predictions. 

• We analyze the gluon GPDs in our model for both  and  ( in experiments  ). 

• In the light cone gauge ( ) , 4  helicity conserving gluon GPDs:  

•  
• 4 gluon helicity flip GPDs:  

•

ξ = 0 ξ ≠ 0 ξ ≠ 0

A+ = 0

3

where  "(#)
�g�X

(x,p?) are the LFWFs corresponding to the two-particle state |�g,�X ;xP+
,p?i. Here �g and �X stands

stand for the helicity components of the constituent active gluon and spectator, respectively while p? is the transverse
momentum of the gluon.

The two-particle light-cone wave functions LFWFs of the proton with Jz = +1/2 have the following form (give
reference of our previous paper)

 
"
+1+ 1

2
(x,p?) = �

p

2
(�p

1
? + ip

2
?)

x(1� x)
'(x,p2

?),

 
"
+1� 1

2
(x,p?) = �

p

2

✓
M �

MX

(1� x)

◆
'(x,p2

?),

 
"
�1+ 1

2
(x,p?) = �

p

2
(p1? + ip

2
?)

x
'(x,p2

?),

 
"
�1� 1

2
(x,p?) = 0, (2)

where both M and MX represent the masses of the proton and spectator. systems. Similarly, the two-particle
light-front wavefunctions LFWFs of a proton with Jz = �1/2 have the form
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hereHere '(x,p2
?) is the modified form of the soft-wall AdS/QCD wave function, which is modeled by introducing the

parameters a and b. The expression for the wave function '(x,p2
?) is based on AdS/QCD formalism and modified

by x and 1 � x factors, that explains the low and high x region behaviour of the PDFs. The complete form of the
modified soft-wall AdS/QCD wave function is given as [73] cite our paper as well,

'(x,p2
?) = Ng

4⇡



r
log[1/(1� x)]

x
x
b(1� x)a exp


�

log[1/(1� x)]

22x2
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(4)

where a, b, , and Ng are the model parameters which are fixed by fitting the NNPDF3.0 NLO gluon unpolarized
PDF data set at initial scale µ0 = 2 GeV and can be found in Ref. [55]. For the stability of the proton, the sum of
constituents masses is considered higher than the proton mass, i.e., MX > M [74]. It is also necessary for the stability
of proton. **Explain why**. With a = 0 and b = 0, the modified form of light-front wave function, '(x,p2

?) reduces
to its original form [75].

III. GLUON GPDS

In the light-cone gauge A
+ = 0, the o↵-forward matrix elements of the bilocal currents of light-front correlation

functions defines the four leading twist gluon helicity conserving GPDs [2, 22, 76]
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where F̃
↵� = 1

2✏
↵���

F�� is the dual field strength tensor and a summation over i = 1, 2 is implied. **What is S ? **
Similarly, the remaining four gluon helicity flip GPDs involves the matrix elements of gluon tensor operator

4

SF+i(�z/2)F+j(z/2), where S represents the symmetrization operator in i and j and can be given as,
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where u (ū) are the light-front spinors with p (p0) and � (�0) the momenta and the helicity of the initial (final)

state of proton. The kinematic variables are denoted as: the average momentum P
µ = (p+p0)µ

2 , momentum transfer
�µ = p

0µ
� p

µ, the skewness ⇠ = ��+
/2P+, and the invariant momentum transfer in the process t = �2 = �Q

2.
The standard form of the gluon field strength tensor Fµ⌫

a (x) is given in terms of structure constant fabc as follows

F
µ⌫
a (x) = @

µ
A

⌫
a(x)� @

⌫
A

µ
a(x) + gfabcA

µ
b (x)A

⌫
c (x), (8)

We choose light cone gauge A
+ = 0 which fixes the gauge link between the fields to be unity. It also implies that

F
+i = @

+
A

i which simplifies the calculation. The operator F+i(� z
2 ) is associated with incoming gluon while F

+j( z2 )
is associated with an outgoing gluon. We use the light-cone quantization framework to obtain the gluon distributions
in terms of light-cone helicity amplitudes. We then define the following helicity amplitudes which are connected to
di↵erent gluon GPDs based on the di↵erent proton and gluon helicity configurations:
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where µ (µ0) denote the the gluon helicity of the initial (final) state and ✏ is the two-dimensional gluon polarization
vectors. Parity invariance results following relation among the various helicity amplitudes as,

A��0�µ0,���µ = (�1)�
0�µ0��+µ (A�0µ0,�µ)

⇤ (10)

A. GPDs at non zero skewness

** cite e-Print: hep-ph/0611159 [hep-ph], e-Print: hep-ph/0604262 [hep-ph] in this section, if not already done so **,
cited in Introduction

The internal structure of proton has primarily been investigated within the confines of the ⇠ = 0 limit in most studies.
However, in order to fully uncover the wealth of information available within the three-dimensional momentum transfer
space, it is imperative to assess the Generalized Parton Distributions (GPDs) at non-zero skewness values. In the
recent works [77, 78] people have started to work on GPDs at non-zero skewness. The helicity amplitudes, A�0µ0,�µ

includes specific information regarding the initial and final helicities of the proton and gluon. The chiral-even GPDs
are defined in terms of helicity amplitudes wherein the helicity of the gluon does not change and the helicity of the
nucleon does. While in the chiral odd GPDs gluon flips its helicity. The chiral-even GPDs can be expressed through
the gluon helicity conserving amplitudes as follows [5, 17, 76] :

H
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T
g
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T
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• We consider  only:  particle number conserving process. 

• In the forward limit GPDs            PDFs 

• Unpolarised gluon GPD  = unpolarised gluon pdf 

• Helicity dependent GPD    = helicity pdf

x ≥ ξ

Hg(x, ξ = 0,t = 0) = fg(x)

H̃g(x, ξ = 0,t = 0) = gg
1L(x)

Check for your 
calculations! 



Gluon  GPDs  at   as functions of −t = 3 GeV2 (x, ξ)
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FIG. 1: Our predictions for the 3D representation of gluon GPDs as a function of gluon longitudinal momentum
fraction x and skewness parameter ⇠ for fixed transverse momentum transfer, �|t| = 3 GeV2.

while on the other hand, the chiral-odd GPDs can be written in terms of gluon helicity non-conserving amplitudes as,
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H̃
g
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where T
g
i and eT g

i are chiral even and odd helicity basis which are defined as a combination of helicity amplitudes [79]
as:

T
g
1 = A++,++ +A�+,�+, T

g
2 = A++,++ �A�+,�+,

T
g
3 = A++,�+ +A+�,��. T

g
4 = A++,�+ �A+�,��, (19)

and

eT g
1 = A++,�� +A�+,+�, eT g

2 = A++,�� �A�+,+�,

eT g
3 = A++,+� +A+�,++,

eT g
4 = A++,+� �A+�,++ (20)

Here t0 is the minimum value of the transverse momentum transfer t, i.e., t0 = �4M2
⇠
2
/(1 � ⇠

2) for a given value
of ⇠ with ✏ = sgn(Di) where D

i is the i
th component of D↵ = P

+�↵
��+

P
↵ and t = t0 for D

i = 0. The matrix
elements T

g
i and eT g

i can be written in terms of overlap of light-front wavefunctions. The detailed calculation and
expressions for the above matrix elements are given in the Appendix A. Using the equations (A11 -A17) in the above
relations we can get the expressions for individual GPDs at non-zero skewness.

Since skewness is typically non-zero in experiments, it is crucial to look at the dependence of the GPDs on skewness
particularly. Fig. (1) showcases the chiral even and odd GPDs in three-dimensional momentum space, with respect to
⇠ and x, while at a fixed transverse momentum transfer of �|t| = 3 GeV2. These plots reveal that the distribution in

 In our model
H̃g

T = 0

 are of similar behaviour(with different magnitudes)xEg, xẼg, xH8
T
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FIG. 2: Red darker, blue dotted and green dashed plots with bands show the GPDs at skewness ⇠ = 0.1, ⇠ = 0.2 and
⇠ = 0.3 respectively for a fixed momentum transfer �|t| = 3 GeV2.

the x space depends upon the specific value of ⇠ Though the GPDs are oscillatory in x-space, they vary monotonically
with ⇠. GPDs behaviour can be split in three di↵erent regions [80]: (i) x � ⇠ corresponds to the situation when a
quark of initial longitudinal momentum fraction of x + ⇠ struck with a photon and come back to the nucleon with
longitudinal momentum fraction x � ⇠; (ii) Similarly the x  �⇠ corresponds the distributions of anti-quarks where
both the longitudinal momentum fractions x + ⇠ and x � ⇠ are negative, x � ⇠ and x  �⇠ regions are known as
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) domain; and (iii) the third region �⇠  x  ⇠, which is known
as Efremov-Radyushkin-Brodsky-Lepage (ERBL) region . In this region corresponds to the process in which a quark
of longitudinal momentum x + ⇠ interact with a virtual photon and emit an anti-quark of longitudinal momentum
⇠ � x. Our predictions are restriced to the DGLAP region (x > ⇠ only), as in the ERBL region, the GPDs would
involve particle number changing overlaps involving higher Fock components of the LFWFs, which is beyond the
scope of the present work. As shown in the Fig. 1 the distributions exhibit non-zero values in the x � ⇠ region only.
The 3D xH

g distribution shows behaviour of unpolarized GPD. The amplitude of the distribution depends on the
value of x and ⇠ such a way that it is close to zero when x is very close to ⇠ but for x � ⇠ it peaks towards negative
direction for small values of x and shifts to positive after a certain value of x the position of the peak in x depends
on the value of ⇠. Similar kind of behaviour is also shown by xH̃

g distribution with magnitude is almost half of the
magnitude of the xH

g distribution. The forward limit of Hg and H̃
g could can be related to the unpolarized and

helicity PDFs respectively. Since the results in the Fig. 1 are presented at fixed momentum transfer, therefore we
cannot relate these results to the forward limit. The distributions xEg, xẼg and xH

g
T show similar behaviour but of

di↵erent orders of amplitude.
In Fig. 2, we depict the representation of GPDs as a function of the longitudinal momentum fraction variable x

within the context of the DGLAP region. These plots are generated at specific values of skewness parameter ⇠ and
momentum transfer�|t| = 3 GeV2. The 2D distributions of xHg and xH̃

g change their signs negative to positive
oscillates from negative to positive as they goes from small to large x for a particular value of ⇠ whereas xEg

, xẼ
g
, xE

g
T

and xH
g
T don’t change their signs. The magnitude of both positive and negative peaks depends on the value of ⇠

as shown in Fig. 2. We observe that the magnitudes of the peaks xH
g and xH̃

g decrease and shift towards to the
large value of x as we increase the value of skewness parameter. The distributions xẼg and xE

g
T follow similar trend.

While, contrary to these, the magnitudes of in the case of xEg and xH
g
T distributions the magnitude of the peaks

goes up for the higher value of increase with increasing ⇠, though the distributions shift towards larger x.

Magnitudes of the peaks depend on skewness ξ



GPDs in impact parameter space

• 2D Fourier transform with respect to the transverse momentum transferred at  gives 
the GPD in impact parameter space. 

•  

• GPDs in impact parameter have probabilistic interpretation. 

• : transverse size of the nucleon. At small , gluons show larger transverse radius than 
quarks. At larger , the radius decreases, becomes point-like at .

ξ = 0
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FIG. 7: Our predictions for the 3D impact parameter dependent generalized parton distributions, Hg, eHg, Eg, Hg
T

and E
g
T as a function of x and the transverse impact parameter b? at zero skewness.

V. GPDS IN IMPACT PARAMETER SPACE (IPDS)

The two dimensional Fourier transform of the GPDs at zero skewness with respect to the transverse momentum
transferred, �? to the process is used to determine the impact parameter-dependent generalized parton distributions
also known as IPDs [36],

F(x, b?) =

Z
d
2�?
(2⇡)2

e
�i�?.b?F

g(x, ⇠ = 0, t = ��2
?) (40)

where b? is impact parameter in the transverse plane which is the transverse distance between the struck parton
and the center of momentum of the hadron. In the context of momentum space, the generalized parton distributions
are depicted as o↵-diagonal matrix elements, devoid of any immediate probabilistic implications. Conversely, when
analyzed within the framework of impact parameter space, these distributions not only adhere to rigorous positivity
conditions but also o↵er a compelling and substantial probabilistic interpretation [36, 91].

In Figure 7, we depict three-dimensional representations of the non-zero generalized parton distributions in impact
parameter space. Both the chiral even and the chiral odd GPDs are presented as functions of gluon longitudinal
momentum fraction x and impact parameter b? at zero skewness. Notably, the first plot in Figure 7 reveals that the
impact parameter distribution H

g satisfies stringent positivity constraints, i.e., Hg
� 0, thereby a↵ording a proba-

bilistic interpretation. For a more precise understanding, one can examine the first plot in Figure 8, which illustrates
how the unpolarized IPDs change with respect to the impact parameter b? at particular values of gluon momentum
fraction x. Likewise, the helicity GPD in impact parameter space, (what is helicity impact parameter?) eHg exhibits a
positive distribution across the entire transverse impact parameter range, adhering to the positivity constraint. This
specific representation of the helicity GPD in impact parameter space quantifies the di↵erence in density between glu-
ons with positive and negative helicity. The generalized parton distributions E

g and H
g
T exhibit comparable shapes

and display a negative distribution across the entire range of impact parameter space. To establish a probabilistic
understanding, it is crucial to focus on amplitudes where the initial and final states possess matching helicities. Nev-
ertheless, a challenge arises when attempting to develop a probabilistic interpretation for Eg in momentum space, as
it is associated with states that have di↵ering helicities between the initial and final states. Finally, the chiral-odd
GPD, denoted as Eg

T , exhibits a positive behavior across the entire range of b?. It demonstrates significant amplitude
at small x values but is noticeably attenuated in the region x � 0.5. In Fig. 9 we present the x-dependent squared
radius of gluon densities in the transverse plane as a function of x. The parameter hb

2
?i signifies the transverse size

⟨b2
⊥⟩ x

x x = 1

Transverse distance of the struck quark from the CoM

M. Burkardt, IJMPA18,  187(2003)
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FIG. 8: Our predictions for the 2D impact parameter dependent generalized parton distributions of Hg, eHg, Eg, Hg
T

and E
g
T as a function of the transverse impact parameter b?. These predictions are generated for specific values of

the momentum fraction x, precisely, x = 0.1, x = 0.3 and x = 0.5, with the zero skewness.

FIG. 9: Our predictions for the average squared transverse radius of the gluon density, denoted as hb2?i(x) as a
function of x.

of the hadron, revealing an expansion of the transverse radius as parton momentum fraction x decreases [92]. At
lower values of x, the gluon displays a larger transverse average radii in contrast to the quark. Conversely, as x values
increase, the transverse size of the gluon decreases. As expected, when x approaches to 1, the proton’s transverse size
resembles that of a point-like object, illustrating the color transparency of the proton [92, 93].

VI. CONCLUSION

In this work, we have employed a recently developed light-front spectator model, incorporating the gluon as an
active parton and the rest as spectator. The proton light-front wavefunctions are adopted from the soft-wall AdS/QCD
prediction. The model provides valuable insights into the leading twist gluon transverse momentum dependent parton
distribution function (TMDPDFs), generalized parton distributions (GPDs) and generalized transverse momentum



Transverse radius
• : transverse size of the nucleon. At small , gluons show slightly larger 

transverse radius than quarks. At larger , the radius decreases, becomes point-like 
at .

⟨b2
⊥⟩ x

x
x = 1

exhibits a positive distribution across the entire transverse
impact parameter range, adhering to the positivity constraint.
This specific representation of the helicity GPD in impact
parameter space quantifies the difference in density between
gluons with positive and negative helicity. The generalized
parton distributions Eg and Hg

T exhibit comparable shapes
and display a negative distribution across the entire range of
impact parameter space. To establish a probabilistic under-
standing, it is crucial to focus on amplitudes where the initial
and final states possess matching helicities. Nevertheless, a
challenge arises when attempting to develop a probabilistic
interpretation for Eg in momentum space, as it is associated
with states that have differing helicities between the initial

and final states. Finally, the chiral-odd GPD, denoted as Eg
T ,

exhibits a positive behavior across the entire range of b⊥. It
demonstrates significant amplitude at small x values but is
noticeably attenuated in the region x ≥ 0.5. In Fig. 11 we
present the squared radius of gluon densities in the trans-
verse plane as a function of x. The parameter hb2⊥i signifies
the transverse size of the hadron, revealing an expansion of
the transverse radius as parton momentum fraction x
decreases [100]. At lower values of x, the gluon displays
a larger transverse average radii in contrast to the quark.
Conversely, as x values increase, the transverse size of the
gluon decreases. As expected, when x approaches to 1, the
proton’s transverse size resembles that of a pointlike object,
illustrating the color transparency of the proton [100,101].

VI. CONCLUSION

In this work, we have employed a recently developed
light-front spectator model, incorporating the gluon as an
active parton and the rest as a spectator. The proton light-
front wave functions are adopted from the soft-wall AdS/
QCD prediction. The model provides valuable insights into
the leading twist gluon TMDPDFs, GPDs, and GTMDs.
Within the light-cone formalism, the above distribution
functions can be expressed as the overlap of the proton
wave functions. We have extended our investigation to the
gluon GPDs at zero and nonzero skewness in the DGLAP
region, shedding light on their intricate behavior in various
momentum configurations. We have explored both chiral
even and chiral-odd gluon GPDs at leading twist. At
nonzero skewness, among the eight leading-twist GPDs

FIG. 10. 2D plots of impact parameter dependent GPDs, Hg, H̃g, Eg, Hg
T and Eg

T as a function of the transverse impact parameter b⊥
(in fm) for specific values of the momentum fraction x, precisely, x ¼ 0.1; x ¼ 0.3 and x ¼ 0.5, with ξ ¼ 0.

FIG. 11. Model predictions for the average squared transverse
radius of the gluon density, denoted as hb2⊥i (in fm2) as a function
of x.
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Orbital angular momentum

• According to Ji’s sum rule:     

•  

• Our estimate     consistent with BLFQ result of   

• Helicity GPD gives the spin contribution of gluon: 
    

•  Separation of gluon spin and OAM is not unique! 

•  Spin asymmetries in polarised scattering experiments are directly proportional to the 
gluon  intrinsic spin!      

• Two definitions of OAM: Kinetic and canonical OAM.               
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form factor B(Q2), is negative in our model. It peaks around t = 0 which is the forward limit of GPDs but it does
not correspond to any PDF. There are two more non-zero chiral odd gluon GPDs, Hg

T and E
g
T . We notice that the

behaviour of GPD H
g
T (x, ⇠ = 0, t) is quite similar to the GPD E

g(x, ⇠ = 0, t) and they are related to each other as
E

g = (1� x)Hg
T . Similarly, in Ref. [81] the authors have derived a relation between these GPDs as Eg = xH

g
T . Both

E
g and H

g
T GPDs are negative and peak around the same values of x and t. The GPD E

g
T (x, ⇠ = 0, t) has the largest

amplitude in the smaller value of x but it also vanishes with increasing value of x. All the GPDs vanish as x ! 1,
independent of the choice of the momentum transfer.
** Discuss some physics associated with such behaviour as given in above para.**

In Fig. 4 we show the 2-dimensional momentum distribution of gluon GPDs Hg(x, 0, t), eHg, Eg(x, 0, t), Hg
T (x, 0, t)

and E
g
T (x, 0, t) with x at certain values of momentum transfer�? = 0.5, 1, 1.5 GeV, respectively. More discussion

needed which shows the correspondence with 3D to 2D distributions!! ** Do you mean 2D
vs 3D plots here ??** ** Yes, these are just 2d plots of the same functions i.e, plotted against x for some fixed values
of t.

IV. ORBITAL ANGULAR MOMENTUM (OAM)

This section needs further discussions to be included. Please see the introduction of our recent paper e-Print: 2311.04622 [hep-ph]. Also we have to cite this paper. Modify the next sentence accordingly.
The intrinsic spins of quarks and gluons account for only a fraction of the nucleon’s total spin. The orbital angular
momentum is responsible for the remaining part of the proton spin. The orbital angular momentum is related to the
spatial distribution of quarks, gluons and their motion within the nucleon. GPDs also provide spatial distribution of
quarks and gluons through the Fourier transformation.

A. Kinetic OAM

The Generalized Parton Distributions (GPDs) o↵er a unique opportunity to investigate the nucleon spin structure.
According to Ji’s sum rule [63], the total angular momentum J

g
z of the gluons can be obtained via the moments of

the chiral even helicity conserving GPD H
g and helicity non conserving GPD E

g through the following sum rule :

J
g
z =

1

2

Z
dxx [Hg(x, 0, 0) + E

g(x, 0, 0)] (26)

Substituting Equations (21) and (23) into Equation (26), we obtained the gluon’s total angular momentum as
J
g
z = 0.058 in our model, which aligns with recent findings from the BLFQ collaboration, where Jg

z |BLFQ = 0.066 [69].
** Explain the similarity and di↵erence with our model **It’s worth noting that in an analogous gluon spectator
model which is based on similar assumption and only di↵erent by the choice of wave function, the gluon’s total
angular momentum is determined as J

g
z = 0.19 [81]. The results from this model [81] is consistent with the recent

lattice result Jg
z = 0.187(46)(10) obtained by the ETM Collaboration [82], where the lattice result is provided in the

MS scheme at a scale of 2 GeV. However, it is important to recognize that these two results were obtained at di↵erent
scales and cannot be directly compared.

Using the sum rules of gluon GPDs Hg
, eHg and E

g we also calculate the gluon kinetic orbital angular momentum
(OAM) inside the proton from the expression [62–64, 83]

L
g
z =

1

2

Z
{x [Hg(x, 0, 0) + E

g(x, 0, 0)]� eHg(x, 0, 0)} (27)

Our numerical results shows that L
g
z = �0.18 which means that the gluon kinetic orbital angular momentum is

negative. In Fig. 5 we show the variation of the unintegrated gluonic kinetic orbital angular momentum with respect
to gluon longitudinal momentum fraction x. Furthermore, it is noteworthy to highlight that the contribution in the
small-x region is not negligible. The kinetic OAM distribution reaches its peak at approximately x = 0.07, and it
decreases rapidly as x goes to 1. A similar behavior of gluon kinetic orbital angular momentum has been reported
in another gluon spectator model, with their calculated value for gluon kinetic orbital angular momentum being
L
g
z = �0.123 [81], which is also negative and comparable to our predictions.

B. Canonical OAM from GTMDs

In this section, we explored the derivation of gluon canonical orbital angular momentum using chirally even gluon
generalized transverse momentum distributions (GTMDs) within the light-front gauge. GTMDs o↵er a comprehensive

Jg
z = 0.058 Jg

z = 0.066

ΔG = ∫ dx g1L(x) = ∫ dx H̃g(x,0,0)

B. Lin et al. 2308. 08275

X. Ji, PRL 78, 610



•   Kinetic OAM:             defined in terms of GPDs. 

•  

• Our result:    
•

9

form factor B(Q2), is negative in our model. It peaks around t = 0 which is the forward limit of GPDs but it does
not correspond to any PDF. There are two more non-zero chiral odd gluon GPDs, Hg

T and E
g
T . We notice that the

behaviour of GPD H
g
T (x, ⇠ = 0, t) is quite similar to the GPD E

g(x, ⇠ = 0, t) and they are related to each other as
E

g = (1� x)Hg
T . Similarly, in Ref. [81] the authors have derived a relation between these GPDs as Eg = xH

g
T . Both

E
g and H

g
T GPDs are negative and peak around the same values of x and t. The GPD E

g
T (x, ⇠ = 0, t) has the largest

amplitude in the smaller value of x but it also vanishes with increasing value of x. All the GPDs vanish as x ! 1,
independent of the choice of the momentum transfer.
** Discuss some physics associated with such behaviour as given in above para.**

In Fig. 4 we show the 2-dimensional momentum distribution of gluon GPDs Hg(x, 0, t), eHg, Eg(x, 0, t), Hg
T (x, 0, t)

and E
g
T (x, 0, t) with x at certain values of momentum transfer�? = 0.5, 1, 1.5 GeV, respectively. More discussion

needed which shows the correspondence with 3D to 2D distributions!! ** Do you mean 2D
vs 3D plots here ??** ** Yes, these are just 2d plots of the same functions i.e, plotted against x for some fixed values
of t.

IV. ORBITAL ANGULAR MOMENTUM (OAM)

This section needs further discussions to be included. Please see the introduction of our recent paper e-Print: 2311.04622 [hep-ph]. Also we have to cite this paper. Modify the next sentence accordingly.
The intrinsic spins of quarks and gluons account for only a fraction of the nucleon’s total spin. The orbital angular
momentum is responsible for the remaining part of the proton spin. The orbital angular momentum is related to the
spatial distribution of quarks, gluons and their motion within the nucleon. GPDs also provide spatial distribution of
quarks and gluons through the Fourier transformation.

A. Kinetic OAM

The Generalized Parton Distributions (GPDs) o↵er a unique opportunity to investigate the nucleon spin structure.
According to Ji’s sum rule [63], the total angular momentum J

g
z of the gluons can be obtained via the moments of

the chiral even helicity conserving GPD H
g and helicity non conserving GPD E

g through the following sum rule :

J
g
z =

1

2

Z
dxx [Hg(x, 0, 0) + E

g(x, 0, 0)] (26)

Substituting Equations (21) and (23) into Equation (26), we obtained the gluon’s total angular momentum as
J
g
z = 0.058 in our model, which aligns with recent findings from the BLFQ collaboration, where Jg

z |BLFQ = 0.066 [69].
** Explain the similarity and di↵erence with our model **It’s worth noting that in an analogous gluon spectator
model which is based on similar assumption and only di↵erent by the choice of wave function, the gluon’s total
angular momentum is determined as J

g
z = 0.19 [81]. The results from this model [81] is consistent with the recent

lattice result Jg
z = 0.187(46)(10) obtained by the ETM Collaboration [82], where the lattice result is provided in the

MS scheme at a scale of 2 GeV. However, it is important to recognize that these two results were obtained at di↵erent
scales and cannot be directly compared.

Using the sum rules of gluon GPDs Hg
, eHg and E

g we also calculate the gluon kinetic orbital angular momentum
(OAM) inside the proton from the expression [62–64, 83]

L
g
z =

1

2

Z
{x [Hg(x, 0, 0) + E

g(x, 0, 0)]� eHg(x, 0, 0)} (27)

Our numerical results shows that L
g
z = �0.18 which means that the gluon kinetic orbital angular momentum is

negative. In Fig. 5 we show the variation of the unintegrated gluonic kinetic orbital angular momentum with respect
to gluon longitudinal momentum fraction x. Furthermore, it is noteworthy to highlight that the contribution in the
small-x region is not negligible. The kinetic OAM distribution reaches its peak at approximately x = 0.07, and it
decreases rapidly as x goes to 1. A similar behavior of gluon kinetic orbital angular momentum has been reported
in another gluon spectator model, with their calculated value for gluon kinetic orbital angular momentum being
L
g
z = �0.123 [81], which is also negative and comparable to our predictions.

B. Canonical OAM from GTMDs

In this section, we explored the derivation of gluon canonical orbital angular momentum using chirally even gluon
generalized transverse momentum distributions (GTMDs) within the light-front gauge. GTMDs o↵er a comprehensive

momentum transfer and its peak decreases a bit slowly as
compared to the unpolarized GPD with increasing x and t.
The helicity GPD H̃g also shows a similar trend as the
unpolarized GPD, Hg. We observe that at zero skewness,
our model’s GPD results are qualitatively similar to those
reported in Ref. [90]; however, quantitatively they differ.
This discrepancy can be attributed to the differences in the
initial scales of the models; our model uses an initial scale
of μ20 ¼ 4 GeV2, whereas in Ref. [90] the initial scale is
μ20 ¼ 0.8 GeV2. We also observed that in Fig. 3 of
Ref. [90], the authors reported the effect of the initial scale
on the unpolarized GPD at initial scales of μ20 ¼ 1.2 GeV2

and μ20 ¼ 1.6 GeV2. From this scale variation, it is apparent
that increasing the initial scale results in a decrease in the
amplitude of the distribution. Consequently, we might
expect that at μ20 ¼ 4 GeV2, these distributions could also
be quantitatively similar to our distributions. Whereas the
unpolarized and helicity GPDs Hg and H̃g are found to be
positive for all values of x and t in BLFQ [51] and extended
holographic light-front QCD [66] approaches. The gluon
GPD Eg, which is also related to the spin-flip gravitational
form factor BðQ2Þ, is negative in our model. It peaks
around t ¼ 0, which is the forward limit of GPDs, but it
does not correspond to any PDF. There are two more non-
zero chiral odd gluon GPDs,Hg

T and Eg
T . We notice that the

behavior of GPD Hg
Tðx; ξ ¼ 0; tÞ is quite similar to the

GPD Egðx; ξ ¼ 0; tÞ and they are related to each other as
Eg ¼ ð1 − xÞHg

T . Similarly, in Ref. [75,90] the authors have
derived a relation between these GPDs as Eg ¼ xHg

T . Both
Eg and Hg

T GPDs are negative and peak around the same
values of x and t. The GPD Eg

Tðx; ξ ¼ 0; tÞ has the largest
amplitude in the smaller value of x but it also vanishes with
increasing value of x. All the GPDs vanish as x → 1,
independent of the choice of the momentum transfer.
In Fig. 6 we show the gluon GPDs Hgðx; 0; tÞ, H̃g,

Egðx; 0; tÞ, Hg
Tðx; 0; tÞ, and Eg

Tðx; 0; tÞ with x at certain
values of momentum transfer Δ⊥ ¼ 0.5, 1, 1.5 GeV,
respectively.

IV. ORBITAL ANGULAR MOMENTUM

As discussed in the introduction, gluons contribute
significantly to the spin of the nucleon. However, the
decomposition of the nucleon spin into quark and gluon
intrinsic spin and OAM parts is not unique. There is also a
question of separation of gluon contribution into those in a
gauge invariant manner. Polarized scattering experiments
have measured spin asymmetries which are directly sensi-
tive to gluon intrinsic spin. The experimental observables
must be related to a gauge-invariant object. This led to a lot
of theoretical discussions, a consolidated summary can be
found in [76]. There are two main decompositions: kinetic
and canonical. Below, we investigate both the kinetic and
canonical gluon orbital angular momentum in this model.

A. Kinetic OAM

According to Ji’s sum rule [78], the total angular
momentum Jgz of the gluons can be obtained via the
moments of the chiral even helicity conserving GPD Hg

and helicity nonconserving GPD Eg through the following
sum rule:

Jgz ¼
1

2

Z
dxx½Hgðx; 0; 0Þ þ Egðx; 0; 0Þ&: ð26Þ

Substituting Eqs. (21) and (23) into Eq. (26), we
obtained the gluon’s total angular momentum as Jgz ¼
0.058 in our model, which aligns with recent findings from
the BLFQ collaboration, where JgzjBLFQ ¼ 0.066 [51].
However, it should be noted that the scale in [51] is
0.5 GeV, which is different from that used in our model.
In an analogous gluon spectator model, with a different

wave function, the gluon’s total angular momentum is
determined as Jgz ¼ 0.19 [90]. The results from this model
[90] are consistent with the recent lattice result Jgz ¼
0.187ð46Þð10Þ obtained by the ETM collaboration [91],
where the lattice result is provided in the minimal
subtraction scheme at a scale of 2 GeV.
Using the sum rules of gluon GPDs Hg; H̃g, and Eg we

calculate the gluon OAM in the light-cone gauge from the
expression [76–78,92]

Lg
z ¼

Z
dx

!
1

2
x½Hgðx; 0; 0Þ þ Egðx; 0; 0Þ& − H̃gðx; 0; 0Þ

"
:

ð27Þ

Our numerical results show that Lg
z ¼ −0.42 which means

that the gluon kinetic OAM is negative. In Fig. 7 we show
the variation of the unintegrated gluonic kinetic OAM with
respect to gluon longitudinal momentum fraction x.
Furthermore, it is noteworthy to highlight that the con-
tribution in the small-x region is not negligible. The kinetic
OAM distribution peaks at low x, decreasing rapidly as x

FIG. 7. Model predictions on unintegrated gluon kinetic OAM
as a function of momentum fraction x.

GLUON GENERALIZED PARTON DISTRIBUTIONS OF THE … PHYS. REV. D 109, 114040 (2024)
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Lg
z = − 0.42

Unintegrated kinetic OAM as a function of x



Canonical OAM

• Canonical OAM  in the light cone gauge is defined by GTMDs as

11

FIG. 6: Our predictions for the gluon kinetic OAM which can be obtained with F
g
1,4 gluon generalized transverse

momentum distribution function (Letf) whereas the gluon spin-orbit correlations which can be obtained with gluon
G

g
1,1 GTMD (Right).

In the forward limit, i.e., at ⇠ = 0 and �? = 0 limit the unpolarized gluon GTMD, F g
1,1 gives the unpolarized gluon

TMD which describe the unpolarized gluon density as,

f
g
1 (x) =

Z
d
2p?F

g
1,1(x, 0,p?, 0, 0) (35)

which can be find we discussed in our previous work [55]. Whereas, the canonical orbital angular momentum of gluon,
`
g
z can be obtained from GTMD F

g
1,4 in the light-cone gauge as [64, 66, 68, 85, 87],

`
g
z(x) = �

Z
d
2p?

p2
?

M2
F

g
1,4(x, 0,p?, 0, 0). (36)

The gluon longitudinal momentum fraction x dependence of gluon canonical orbital angular momentum, `gz can be
given as,

`
g
z(x) = �N

2
g

2 1� (1� x)2

x2(1� x)2
x
2b+3(1� x)2a+1 1

log[ 1
1�x ]

(37)

Similarly, the spin-orbit correlation factor for the gluons can be obtained by using the gluon GTMD G
g
1,1 as [13, 66,

88, 89],

C
g
z (x) =

Z
d
2p?

p2
?

M2
G

g
1,1(x, 0,p?, 0, 0) (38)

and the fourth chiral even GTMD G
g
1,4 gives the gluon helicity TMD g

g
1L in the forward limit, corresponding collinear

parton distribution is gluon helicity PDF which contributes to the proton spin as,

�G =

Z
dxd

2p?G
g
1,4(x, 0,p?, 0, 0) (39)

In Fig. 6 we show the gluon momentum fraction x dependence of canonical orbital angular momentum in the left
panel whereas the spin-orbit correlation function has been depicted in the right panel. One can notice that the
gluon canonical OAM, `gz(x) and spin-orbit correlation factor Cg

z (x) both are negatively distributed distributions have
negative values in the whole range of x. After integrating `

g
z(x) over x one can obtained the numerical value of gluon

canonical orbital angular momentum which gives the contribution into Ja↵e–Manohar spin sum rule. In our model
calculations we obtained the numerical value of canonical OAM as `gz = �0.187. As similar to quarks, the canonical
and kinematical gluon OAMs are approximately same in our model, i.e., `gz ' L

g
z as reported in Refs. [64, 84, 90].

Similarly, The spin orbit correlation factor is cgz = �7.7480 in our model, the negative sign implies that the gluon spin
and OAM are oriented in opposite directions.



GTMDs

• GTMDs : higher dimensional distributions                     Wigner distributions. 

• GTMD correlator:  

• W(x, ξ = 0,p⊥, Δ⊥) =
1

xP+ ∫
dz−d2z⊥

(2π)3
eip.z⟨p +

Δ⊥

2
|F+i(−z/2)𝒲F+j |p −

Δ⊥

2
⟩ |z+=0

* TMDs can be obtained from GTMDs at  limit 
**  GPDs in impact parameter space are obtained by integrating GTMDs over 

Δ⊥ = 0
p⊥

Chirally even gluon GTMDs:      F1,1, F1,4, G1,1, G1,4
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partonic representation of hadrons, including both Transverse Momentum Distributions (TMDs) and Generalized
Parton Distributions (GPDs). The TMDs can be extracted from the GTMDs in the forward limit �? = 0. However,
the GPDs can be obtained in impact parameter space upon integration over p?. Consequently, GTMDs are commonly
referred to as mother distributions. The two-dimensional Fourier transform of GTMDs yields Wigner distributions [7],
which characterize the five-dimensional phase-space distribution of partons within the nucleon. These distributions
play a crucial role in revealing spin-orbital correlations, essential for extracting parton orbital angular momentum [14,
15, 84, 85].

In order to obtain the gluon GTMDs we used the parametrization [8, 9, 86] as

xW (x, ⇠ = 0,p?,�?) =

Z
dz

�

2⇡

d
2
z?

(2⇡)2
e
ip.z

⌧
p+

�?
2

�����
ij
F

+i
⇣
�
z

2

⌘
F

+j
⇣
z

2

⌘ ����p�
�?
2

�
(28)

where we have suppressed the color indices in the GTMD correlator because we are considering the light-cone gauge
in which the gauge link become to be unity. The GTMDs, F1,1 F1,4 describes the distortion of unpolarized partons
inside a longitudinally polarized target, whereas G1,1 describes how the longitudinal polarized partons distorts their
distribution inside an unpolarized target. The light cone overlap representation of the gluon GTMDs F

g
1,4 and G

g
1,1

is given by [9]

i(p?⇥�?)z
M2 F

g
1,4 =

1

2(2⇡)3
1

2

X

⇤,�,µ

sign(⇤)
⇥
 
⇤⇤
�,µ(x̂, p̂

0
?) 

⇤
�,µ(x̂, p̂?)

⇤

=
i

2(2⇡)3

X

µ

=

h
 
"⇤
",µ(x̂, p̂

0
?) 

"
",µ(x̂, p̂?)

i
, (29)

�
i(p?⇥�?)z

M2 G
g
1,1 =

1

2(2⇡)3
1

2

X

⇤,�,µ

sign(µ)
⇥
 
⇤⇤
�,µ(x̂, p̂

0
?) 

⇤
�,µ(x̂, p̂?)

⇤

=
i

2(2⇡)3

X

µ

sign(µ)=
h
 
"⇤
",µ(x̂, p̂

0
?) 

"
",µ(x̂, p̂?)

i
(30)

where ⇤, � and µ denoted the proton, quark and gluon helicities, respectively. By employing the proton LFWFs from
Eqs. (2) and (3), the analytical expressions for the above four chiral-even GTMDs can be obtained as,

F1,1(x, ⇠ = 0,p?,�?) =
2N2

g

⇡2
x
2b�1(1� x)2a log

✓
1

1� x

◆(�
1 + (1� x)2

� ⇣
p2
? � (1� x)2�2

?
4

⌘

x2(1� x)2
+

✓
M �

MX

1� x

◆2

+
i(2� x) (p? ⇥�?)

x(1� x)

)
exp

"
�

log
⇣

1
1�x

⌘

2x2

✓
p2
? + (1� x)2

�2
?
4

◆#

(31)

F1,4(x, ⇠ = 0,p?,�?) =
N

2
gM

2

⇡2
x
2b�1(1� x)2a+1 log

✓
1

1� x

◆(�
1� (1� x)2

�

x2(1� x)2

)
exp

2

4�
log

⇣
1

1�x

⌘

2x2

✓
p2
? + (1� x)2

�2
?
4

◆3

5

(32)

G1,1(x, ⇠ = 0,p?,�?) = �
N

2
gM

2

⇡2
x
2b�1(1� x)2a+1 log

✓
1

1� x

◆(�
1 + (1� x)2

�

x2(1� x)2

)
exp

2

4�
log

⇣
1

1�x

⌘

2x2

✓
p2
? + (1� x)2

�2
?
4

◆3

5

(33)

G1,4(x, ⇠ = 0,p?,�?) =
2N2

g

⇡2
x
2b�1(1� x)2a log

✓
1

1� x

◆(�
1� (1� x)2

� ⇣
p2
? � (1� x)2�2

?
4

⌘

x2(1� x)2
+

✓
M �

MX

1� x

◆2

+
i(2� x) (p? ⇥�?)

x(1� x)

)
exp

"
�

log
⇣

1
1�x

⌘

2x2

✓
p2
? + (1� x)2

�2
?
4

◆#

(34)
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partonic representation of hadrons, including both Transverse Momentum Distributions (TMDs) and Generalized
Parton Distributions (GPDs). The TMDs can be extracted from the GTMDs in the forward limit �? = 0. However,
the GPDs can be obtained in impact parameter space upon integration over p?. Consequently, GTMDs are commonly
referred to as mother distributions. The two-dimensional Fourier transform of GTMDs yields Wigner distributions [7],
which characterize the five-dimensional phase-space distribution of partons within the nucleon. These distributions
play a crucial role in revealing spin-orbital correlations, essential for extracting parton orbital angular momentum [14,
15, 84, 85].

In order to obtain the gluon GTMDs we used the parametrization [8, 9, 86] as

xW (x, ⇠ = 0,p?,�?) =

Z
dz

�

2⇡

d
2
z?

(2⇡)2
e
ip.z

⌧
p+

�?
2

�����
ij
F

+i
⇣
�
z

2

⌘
F

+j
⇣
z

2

⌘ ����p�
�?
2

�
(28)

where we have suppressed the color indices in the GTMD correlator because we are considering the light-cone gauge
in which the gauge link become to be unity. The GTMDs, F1,1 F1,4 describes the distortion of unpolarized partons
inside a longitudinally polarized target, whereas G1,1 describes how the longitudinal polarized partons distorts their
distribution inside an unpolarized target. The light cone overlap representation of the gluon GTMDs F

g
1,4 and G

g
1,1

is given by [9]

i(p?⇥�?)z
M2 F

g
1,4 =

1

2(2⇡)3
1

2

X

⇤,�,µ

sign(⇤)
⇥
 
⇤⇤
�,µ(x̂, p̂

0
?) 

⇤
�,µ(x̂, p̂?)

⇤

=
i

2(2⇡)3

X

µ

=

h
 
"⇤
",µ(x̂, p̂

0
?) 

"
",µ(x̂, p̂?)

i
, (29)

�
i(p?⇥�?)z

M2 G
g
1,1 =

1

2(2⇡)3
1

2

X

⇤,�,µ

sign(µ)
⇥
 
⇤⇤
�,µ(x̂, p̂

0
?) 

⇤
�,µ(x̂, p̂?)

⇤

=
i

2(2⇡)3

X

µ

sign(µ)=
h
 
"⇤
",µ(x̂, p̂

0
?) 

"
",µ(x̂, p̂?)

i
(30)

where ⇤, � and µ denoted the proton, quark and gluon helicities, respectively. By employing the proton LFWFs from
Eqs. (2) and (3), the analytical expressions for the above four chiral-even GTMDs can be obtained as,

F1,1(x, ⇠ = 0,p?,�?) =
2N2

g

⇡2
x
2b�1(1� x)2a log

✓
1

1� x

◆(�
1 + (1� x)2

� ⇣
p2
? � (1� x)2�2

?
4

⌘

x2(1� x)2
+

✓
M �

MX

1� x

◆2

+
i(2� x) (p? ⇥�?)

x(1� x)

)
exp

"
�

log
⇣

1
1�x

⌘

2x2

✓
p2
? + (1� x)2

�2
?
4

◆#

(31)

F1,4(x, ⇠ = 0,p?,�?) =
N

2
gM

2

⇡2
x
2b�1(1� x)2a+1 log

✓
1

1� x

◆(�
1� (1� x)2

�

x2(1� x)2

)
exp

2

4�
log

⇣
1

1�x

⌘

2x2

✓
p2
? + (1� x)2

�2
?
4

◆3

5

(32)

G1,1(x, ⇠ = 0,p?,�?) = �
N

2
gM

2

⇡2
x
2b�1(1� x)2a+1 log

✓
1

1� x

◆(�
1 + (1� x)2

�

x2(1� x)2

)
exp

2

4�
log

⇣
1

1�x

⌘

2x2

✓
p2
? + (1� x)2

�2
?
4

◆3

5

(33)

G1,4(x, ⇠ = 0,p?,�?) =
2N2

g

⇡2
x
2b�1(1� x)2a log

✓
1

1� x

◆(�
1� (1� x)2

� ⇣
p2
? � (1� x)2�2

?
4

⌘

x2(1� x)2
+

✓
M �
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1� x
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"
�

log
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1
1�x

⌘

2x2

✓
p2
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�2
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4

◆#

(34)

GTMD  describes the distortion of unpolarised parton in a longitudinally polarised nucleonF1,4

 : distortion of longitudinally polarised gluon inside a unpolarised nucleonG1,1

 =proton helicity 
= quark helicity 
=gluon helicity

Λ
λ
μ
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FIG. 6: Our predictions for the gluon kinetic OAM which can be obtained with F
g
1,4 gluon generalized transverse

momentum distribution function (Letf) whereas the gluon spin-orbit correlations which can be obtained with gluon
G

g
1,1 GTMD (Right).

In the forward limit, i.e., at ⇠ = 0 and �? = 0 limit the unpolarized gluon GTMD, F g
1,1 gives the unpolarized gluon

TMD which describe the unpolarized gluon density as,

f
g
1 (x) =

Z
d
2p?F

g
1,1(x, 0,p?, 0, 0) (35)

which can be find we discussed in our previous work [55]. Whereas, the canonical orbital angular momentum of gluon,
`
g
z can be obtained from GTMD F

g
1,4 in the light-cone gauge as [64, 66, 68, 85, 87],

`
g
z(x) = �

Z
d
2p?

p2
?

M2
F

g
1,4(x, 0,p?, 0, 0). (36)

The gluon longitudinal momentum fraction x dependence of gluon canonical orbital angular momentum, `gz can be
given as,

`
g
z(x) = �N

2
g
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panel whereas the spin-orbit correlation function has been depicted in the right panel. One can notice that the
gluon canonical OAM, `gz(x) and spin-orbit correlation factor Cg

z (x) both are negatively distributed distributions have
negative values in the whole range of x. After integrating `

g
z(x) over x one can obtained the numerical value of gluon

canonical orbital angular momentum which gives the contribution into Ja↵e–Manohar spin sum rule. In our model
calculations we obtained the numerical value of canonical OAM as `gz = �0.187. As similar to quarks, the canonical
and kinematical gluon OAMs are approximately same in our model, i.e., `gz ' L

g
z as reported in Refs. [64, 84, 90].

Similarly, The spin orbit correlation factor is cgz = �7.7480 in our model, the negative sign implies that the gluon spin
and OAM are oriented in opposite directions.

•  Our model result:    

•                                                                                

• Integrated value:  canonical OAM       [consistent with another spectator 
model result  ]
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where b⊥ is the impact parameter in the transverse plane
which is the transverse distance between the struck parton
and the center of momentum of the hadron. In the context
of momentum space, the generalized parton distributions
are depicted as off-diagonal matrix elements devoid of any
immediate probabilistic implications. Conversely, when
analyzed within the framework of impact parameter space,
these distributions not only adhere to rigorous positivity
conditions but also offer a compelling and substantial
probabilistic interpretation [39,99].

In Fig. 9, we depict three-dimensional representations of
the nonzero generalized parton distributions in impact
parameter space. Both the chiral even and the chiral odd
GPDs are presented as functions of gluon longitudinal
momentum fraction x and impact parameter b⊥ at zero
skewness. Notably, the first plot in Fig. 9 reveals that the
impact parameter distribution Hg satisfies stringent positiv-
ity constraints, i.e.,Hg ≥ 0, thereby affording a probabilistic
interpretation. For a more precise understanding, one can
examine the first plot in Fig. 10, which illustrates how the
unpolarized IPDs change with respect to the impact param-
eter b⊥ at particular values of gluon momentum fraction x.
Likewise, the helicity GPD in impact parameter space, H̃g,

FIG. 8. Model predictions for the gluon canonical OAM which can be obtained with Fg
1;4 gluon GTMD (left) whereas the gluon spin-

orbit correlations function which can be obtained with gluon Gg
1;1 GTMD (right).

FIG. 9. Three-dimensional plots of impact parameter dependent GPDs, Hg, H̃g, Eg, Hg
T , and Eg

T as a function of x and the transverse
impact parameter b⊥ (in fm) at ξ ¼ 0.
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Spin-orbit correlation

•  gives the  spin-OAM correlation  

•  spin and OAM are anti-aligned 

•  spin and OAM are aligned.        

•                                                                             

G1,1
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Summary and conclusions

• To understand the three dimensional structure and partonic level description of  
spin/OAM , we need to investigate both quark and gluons (and sea quarks too!). 

• Gluon distributions are not yet well understood/studied. 

• We presented the study of  different gluon distributions in a simple model of 
proton. 

•  gluon contributions to spin/OAM . 

• We require more experiments , lattice results, better models with gluons…
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