

Glueballs in QCD sum rules

Wei Chen

Sun Yat-Sen University

Based on: PRD103 (2021) L091503;PRD104(2021) 094050;RPP86(2023) 026201 Collaborators: Hua-Xing Chen, Yan-Rui Liu, Xiang Liu, Shi-Lin Zhu

Light-Cone 2024: Hadron Physics in the EIC era 2024.11.25-29 IMP • Huizhou

Research progresses on glueballs

- > Two-gluon glueballs
- Three-gluon glueballs
- Summary

Quark model and Exotic hadrons

- > Quark Model: $q\bar{q}$ mesons and qqq baryons
- Exotic Hadrons: hadrons beyond QM, such as multiquarks, hybrids, glueballs...

P

ā

q

ā

Glueballs: colorless bound states of gluons as gluons have a self-coupling

- > Mixing with normal $q\bar{q}$ states, it is hard to isolate the pure glueballs experimentally.
- > No universal definition of constituent gluon: massless or massive?
- Plenty of theoretical studies in the past half century based on various methods.

Mass spectrum of glueballs in LQCD

Lightest glueballs: $J^{PC} = 0^{++}$: $1710 \pm 50 \pm 80 \text{ MeV}$ $J^{PC} = 2^{++}$: $2390 \pm 30 \pm 120 \text{ MeV}$ $J^{PC} = 0^{-+}$: $2560 \pm 35 \pm 120 \text{ MeV}$ There are some candidates in

these channels!

Y. Chen et. al., PRD73(2006)014516

Scalar glueball:

Average mass predictions:

 $M_{|gg;0^{++}
angle}pprox 1650~{
m MeV}$

Candidates: scalar light mesons

 $M_{|gg;0^{++}
angle} pprox 1650 \; {
m MeV}$

Name	$f_0(500)$	$f_0(1370)$	$f_0(1710)$	$f_0(2020)$	$f_0(2200)$
\overline{M} (MeV) Γ (MeV)	410 ± 20 $400 \rightarrow 550$ 480 ± 30 $400 \rightarrow 700$	1370 ± 40 $1200 \rightarrow 1500$ 390 ± 40 $100 \rightarrow 500$	$\begin{array}{c} 1700 \pm 18 \\ 1704 \pm 12 \\ 255 \pm 25 \\ 123 \pm 18 \end{array}$	$ \begin{array}{r} 1925 \pm 25 \\ 1992 \pm 16 \\ 320 \pm 35 \\ 442 \pm 60 \end{array} $	$2200 \pm 25 \\ 2187 \pm 14 \\ 150 \pm 30 \\ \sim 200$
Name	$f_0(980)$	$f_0(1500)$	$f_0(1770)$	$f_0(2100)$	$f_0(2330)$
$\overline{M (MeV)}$ $\Gamma (MeV)$	1014 ± 8 990 ± 20 71 ± 10 10 → 100	$\begin{array}{c} 1483 \pm 15 \\ 1506 \pm 6 \\ 116 \pm 12 \\ 112 \pm 9 \end{array}$	1765 ± 15 180 ± 20	$\begin{array}{c} 2075 \pm 20 \\ 2086 ^{+20}_{-24} \\ 260 \pm 25 \\ 284 ^{+60}_{-32} \end{array}$	$2340 \pm 20 \\ \sim 2330 \\ 165 \pm 25 \\ 250 \pm 20$

Production rates in the gluon-rich J/ψ radiative decay processes:

$$\mathcal{B}(J/\psi \to \gamma f_0(1500)) \sim 0.29 \times 10^{-3},$$

 $\mathcal{B}(J/\psi \to \gamma f_0(1710)) \sim 2.2 \times 10^{-3},$

BESIII:*Natl.Sci.Rev.* 8 (2021) nwab198

 $\mathcal{B}(J/\psi \to \gamma | gg; 0^{++}\rangle) = (3.8 \pm 0.9) \times 10^{-3}$. PRL110(2010)021601

Mixing scheme:

PLB826(2022)36906

$$\mathcal{M} = \begin{pmatrix} M_{gg} & f & \sqrt{2}f \\ f & M_{s\bar{s}} & 0 \\ \sqrt{2}f & 0 & M_{n\bar{n}} \end{pmatrix} \qquad \begin{aligned} H' &= (|n\bar{n}\rangle\cos\varphi' - |s\bar{s}\rangle\sin\varphi')\cos\phi^{H} + |gg\rangle\sin\phi^{H}, \\ L' &= (|n\bar{n}\rangle\sin\varphi' + |s\bar{s}\rangle\cos\varphi')\cos\phi^{L} + |gg\rangle\sin\phi^{L}, \\ |n\bar{n}\rangle &= \frac{|u\bar{u} + d\bar{d}\rangle}{\sqrt{2}}, \qquad f = \langle s\bar{s}|V|gg\rangle = \langle n\bar{n}|V|gg\rangle/\sqrt{2} \\ \int_{0}^{f_{0}(1370)} f_{0}(1500) & f_{0}(1710) & f_{0}(1770) & f_{0}(2020) & f_{0}(2100) \\ (5\pm4)\% &< 5\% & (12\pm6)\% & (25\pm10)\% & (16\pm9)\% & (17\pm8)\%. \end{aligned}$$

Fractional glueball contents: $(78 \pm 18)\%$

 $M \approx 1865 \text{ MeV}$

 $\Gamma\approx 370~\text{MeV}$

Tensor glueball:

$$\begin{aligned} \mathcal{B}(J/\psi \to \gamma f_2(2340) \to \gamma K \bar{K}) &= (5.54^{+0.34}_{-0.40} + 3.82)_{-0.40} \times 10^{-5}, \\ \mathcal{B}(J/\psi \to \gamma f_2(2340) \to \gamma \eta \eta) &= (5.60^{+0.62}_{-0.65} + 2.37)_{-2.07} \times 10^{-5}, \\ \mathcal{B}(J/\psi \to \gamma f_2(2340) \to \gamma \phi \phi) &= (1.91 \pm 0.14^{+0.72}_{-0.73})_{-5} \times 10^{-5}, \end{aligned}$$
BESIII's measurements

 $\mathcal{B}(J/\psi \to \gamma | gg; 2^{++}\rangle) = (1.1 \pm 0.2 \pm 0.1) \times 10^{-2}$

Average mass predictions:

 $M_{|gg;0^{-+}
angle} pprox 2360 \; {
m MeV}$

Pseudoscalar candidate X(2370): BESIII

PRL106(2011)072002: $J/\psi \rightarrow \gamma \pi \pi \eta'$

EPJC80(2020)746: $J/\psi \rightarrow \gamma K K \eta'$

Production rates in the radiative J/ψ decays:

$$\begin{split} \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta') \\ &= (1.79 \pm 0.23 \pm 0.65) \times 10^{-5}, \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^0_S K^0_S \eta') \\ &= (1.18 \pm 0.32 \pm 0.39) \times 10^{-5}. \\ \mathcal{B}(J/\psi \to \gamma X(2500) \to \gamma \phi \phi) = (1.7 \pm 0.2^{+0.2}_{-0.8}) \times 10^{-5}. \end{split}$$

Close to the LQCD prediction of the pseudoscalar glueball

$$\mathcal{B}(J/\psi \to \gamma | gg; 0^{-+} \rangle) = (2.31 \pm 0.80) \times 10^{-4}.$$

PRD9100(2019)054511

Evidence for a t-channel exchanged odderon

PRL127(2021)062003

The discrepancy suggests the existence of a t-channel exchanged odderon with C=-. If exist, it should be a three-gluon glueball!

QCD sum rule calculations of glueballs

The relativistic two-gluon and three-gluon operators:

$J_0 = g_s^2 G_a^{\mu\nu} G_{\mu\nu}^a, \qquad \mathbf{C} = \mathbf{I}$	$\eta_0 = f^{abc} g_s^3 G_a^{\mu\nu} G_{b,\nu\rho} G_{c,\mu}^{\rho},$
${ ilde J}_0=g_s^2 G^{\mu u}_a { ilde G}^a_{\mu u},$	$\tilde{\eta}_0 = f^{abc} g_s^3 \tilde{G}_a^{\mu\nu} \tilde{G}_{b,\nu\rho} \tilde{G}_{c,\mu}^{\rho},$
$J_1^{lphaeta} = g_s^2 G_a^{lpha\mu} \tilde{G}_\mu^{a,eta} - \{lpha \leftrightarrow eta\},$	$\eta_1^{\alpha\beta} = f^{abc} g_s^3 \tilde{G}_a^{\mu\nu} G_{b,\mu\nu} \tilde{G}_c^{\alpha\beta},$
$J_2^{\alpha_1\alpha_2,\beta_1\beta_2} = \mathcal{S}[g_s^2 G_a^{\alpha_1\beta_1} G^{a,\alpha_2\beta_2}],$	$\tilde{\eta}_1^{\alpha\beta} = f^{abc} g_s^3 \tilde{G}_a^{\mu\nu} G_{b,\mu\nu} G_c^{\alpha\beta},$
$ ilde{J}_2^{lpha_1lpha_2,eta_1eta_2} = \mathcal{S}[g_s^2 G_a^{lpha_1eta_1} ilde{G}^{a,lpha_2eta_2}].$	$\eta_2^{\alpha_1\alpha_2,\beta_1\beta_2} = f^{abc} \mathcal{S}[g_s^3 G_a^{\alpha_1\beta_1} G_b^{\alpha_2\mu} G_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}],$
	$\tilde{\eta}_2^{\alpha_1\alpha_2,\beta_1\beta_2} = f^{abc} \mathcal{S}[g_s^3 \tilde{G}_a^{\alpha_1\beta_1} \tilde{G}_b^{\alpha_2\mu} \tilde{G}_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}].$

All spin-1 two- and three-gluon operators with C=+ vanish!

PRD103 (2021) L091503;PRD104(2021) 094050

Three-gluon operators:

$$\begin{split} \xi_{1}^{\alpha\beta} &= d^{abc} g_{s}^{3} G_{a}^{\mu\nu} G_{b,\mu\nu} G_{c}^{\alpha\beta}, \\ \tilde{\xi}_{1}^{\alpha\beta} &= d^{abc} g_{s}^{3} G_{a}^{\mu\nu} G_{b,\mu\nu} \tilde{G}_{c}^{\alpha\beta}, \\ \xi_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} &= d^{abc} \mathcal{S}[g_{s}^{3} \tilde{G}_{a}^{\alpha_{1}\beta_{1}} G_{b}^{\alpha_{2}\mu} \tilde{G}_{c,\mu}^{\beta_{2}} - \{\alpha_{2} \leftrightarrow \beta_{2}\}], \\ \tilde{\xi}_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} &= d^{abc} \mathcal{S}[g_{s}^{3} G_{a}^{\alpha_{1}\beta_{1}} \tilde{G}_{b}^{\alpha_{2}\mu} G_{c,\mu}^{\beta_{2}} - \{\alpha_{2} \leftrightarrow \beta_{2}\}], \\ \tilde{\xi}_{3}^{\dots} &= d^{abc} \mathcal{S}[g_{s}^{3} G_{a}^{\alpha_{1}\beta_{1}} G_{b}^{\alpha_{2}\beta_{2}} G_{c}^{\alpha_{3}\beta_{3}}], \\ \tilde{\xi}_{3}^{\dots} &= d^{abc} \mathcal{S}[g_{s}^{3} \tilde{G}_{a}^{\alpha_{1}\beta_{1}} \tilde{G}_{b}^{\alpha_{2}\beta_{2}} \tilde{G}_{c}^{\alpha_{3}\beta_{3}}], \end{split}$$

PRD103 (2021) L091503; PRD104(2021) 094050

Glueball sum rules:

Two-point correlation function:

$$\begin{split} \Pi^{\alpha\beta,\alpha'\beta'}(q^2) &\equiv i \int d^4x e^{iqx} \langle 0 | \mathbf{T}[J_1^{\alpha\beta}(x) J_1^{\alpha'\beta'\dagger}(0)] | 0 \rangle \\ &= (g^{\alpha\alpha'} g^{\beta\beta'} - g^{\alpha\beta'} g^{\beta\alpha'}) \Pi(q^2), \end{split}$$

Gluon field strength tensor

$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A_{b,\mu} A_{c,\nu},$$

000000000000000000

Full gluon field propagator in the fixed point gauge

$$\begin{aligned} \langle 0|\mathbf{T}[A^{a}_{\mu}(x)A^{b}_{\nu}(y)]|0\rangle &= \frac{\delta^{ab}g_{\mu\nu}}{4\pi^{2}(x-y)^{2}} \\ &+ \frac{g_{s}\ln(-(x-y)^{2})}{8\pi^{2}}f^{abc}G_{c,\mu\nu} \\ &- \frac{g_{s}g_{\mu\nu}x^{\alpha}y^{\beta}}{8\pi^{2}(x-y)^{2}}f^{abc}G_{c,\alpha\beta}(0). \end{aligned}$$

16

OPEs are calculated up to d=8 condensates

Pseudoscalar glueball

PRD104(2021) 094050

Mass prediction:

$$M_{|\rm GG;0^{-+}\rangle} = 2.17 \pm 0.11 \,\,{\rm GeV}.$$

Glueball mass spectrum

			Working Regions				
Glueball	Current	s_0^{\min} [GeV ²]	$s_0 [\text{GeV}^2]$	M_B^2 [GeV ²]	Pole [%]	Mass [GeV]	
$ { m GG};0^{++} angle$	J_0	7.8	9.0 ± 1.0	3.70-4.19	40-48	$1.78^{+0.14}_{-0.17}$	
$ { m GG};2^{++} angle$	$J_2^{lpha_1 lpha_2, eta_1 eta_2}$	8.5	10.0 ± 1.0	3.99-4.60	40-50	$1.86^{+0.14}_{-0.17}$	
$ { m GG};0^{-+} angle$	\tilde{J}_0	8.2	9.0 ± 1.0	3.28-3.70	40-47	$2.17^{+0.11}_{-0.11}$	
$ { m GG};2^{-+} angle$	$ ilde{J}_2^{lpha_1 lpha_2, eta_1 eta_2}$	8.1	10.0 ± 1.0	3.27-4.20	40-55	$2.24_{-0.11}^{+0.11}$	
$ { m GGG};0^{++} angle$	η_0	31.6	33.0 ± 3.0	7.25-7.61	40-44	$4.46_{-0.19}^{+0.17}$	
$ { m GGG};2^{++} angle$	$\eta_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	16.0	35.0 ± 3.0	4.77-9.04	40-90	$4.18_{-0.42}^{+0.19}$	
$ { m GGG};0^{-+} angle$	$\tilde{\eta}_0$	17.0	33.0 ± 3.0	4.48-8.13	40-88	$4.13_{-0.36}^{+0.18}$	
$ \text{GGG};2^{-+} angle$	$ ilde\eta_2^{lpha_1 lpha_2, eta_1 eta_2}$	33.1	35.0 ± 3.0	8.10-8.53	40-44	$4.29^{+0.20}_{-0.22}$	
$ \text{GGG};1^{+-} angle$	$\xi_1^{\alpha\beta}$	9.0	34.0 ± 4.0	3.16-9.09	40-99	$4.01_{-0.95}^{+0.26}$	
$ \mathrm{GGG};2^{+-} angle$	$\xi_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	32.7	35.0 ± 4.0	7.53-8.09	40-46	$4.42_{-0.29}^{+0.24}$	
$ \mathrm{GGG};3^{+-} angle$	$\xi_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3}$	30.2	33.0 ± 4.0	7.69-8.40	40-47	$4.30^{+0.23}_{-0.26}$	
$ \text{GGG};1^{}\rangle$	$\tilde{\xi}_{1}^{\alpha\beta}$	31.2	34.0 ± 4.0	5.81-6.77	40-51	$4.91^{+0.20}_{-0.18}$	
$ \mathrm{GGG};2^{} angle$	$\tilde{\xi}_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}}$	19.7	36.0 ± 4.0	5.80-9.47	40-81	$4.25_{-0.33}^{+0.22}$	
$ \text{GGG};3^{}\rangle$	$\tilde{\xi}_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3}$	35.8	38.0 ± 4.0	6.15-7.22	40–49	$5.59^{+0.33}_{-0.22}$	

PRD103 (2021) L091503; PRD104(2021) 094050

Comparing to LQCD's results

RPP86(2023) 026201

Productions and decays

- The existence of glueball is one of the most distinctive prediction of QCD, and essential to the confirmation of the theory!
- We systematically calculated the mass spectra of the twogluon and three-gluon glueballs.
- The ground state of spin-1 glueballs with C=+ do not exist in the relativistic framework.
- Some gluon-rich processes are expected to detect glueballs.

