Basis Light-front Quantization Approach to Λ_b and Σ_b Baryons

Lingdi Meng in collaboration with

T. Peng, Z. Hu, J. Lan, C. Mondal, X. Zhao, J.P. Vary (BLFQ Collaboration)

Institute of Modern Physics, Chinese Academy of Sciences

26/11/2024

OUTLINE

➢Why do we care about Λ_b?
➢Basis Light-front Quantization
➢Electromagnetic form factors
➢Parton Distribution Functions
➢Conclusion and prospect

Why do we care about Λ_b ?

- Larger mass and shorter life
 compared to proton
- Difficult to measure the bound state in experiment
- ➢Various decay processes are documented (hadronic decay, semileptonic decay...)

proton (0.938 GeV)

 $\Lambda_{\rm b}(5.619~{\rm GeV})$

Light cone distribution amplitudes K. Huang et al. EPJC 83:272 (2023)

Transition form factors

Light-front wave functions

Basis Light-front Quantization

We adopt an effective light-front Hamiltonian and solve the matrix:

 $H_{\rm eff} \left| \Psi \right\rangle = M^2 \left| \Psi \right\rangle$

The effective Hamiltonain is made of several constituents:

$$H_{\rm eff} = H_{\rm k.e.} + H_{\rm trans} + H_{\rm longi} + H_{\rm int}$$

The baryon state can be expanded in the Fock space:

$$|B\rangle = \psi_{(3q)} |qqq\rangle + \psi_{(3q+g)} |qqqg\rangle + \psi_{(3q+q\bar{q})} |qqqq\bar{q}\rangle + \dots$$

valence quark

Basis Light-front Quantization

In longitudinal direction we choose plane wave basis:

$$k_i^+ = \frac{2\pi k_i}{L} \qquad x_i = k_i / K_{\text{tot}}$$

In transverse direction we choose 2-D harmonic oscillator basis:

$$\begin{split} \phi_{nm}(\vec{k}_{\perp}) = &\frac{1}{b} \sqrt{\frac{4\pi n!}{(n+|m|)!}} \left(\frac{\left|\vec{k}_{\perp}\right|}{b}\right)^{|m|} & \sum_{i=1}^{3} 2n_i + |m_i| + 1 \leq N_{\max} \\ & \times e^{-\frac{1}{2}\vec{k}_{\perp}^2/b^2} L_n^{|m|} \left(\frac{\vec{k}_{\perp}^2}{b^2}\right) e^{im\theta}, & \text{truncation parameters} \end{split}$$

3

Total angular momentum projection: $\sum (\lambda_i + m_i) = \Lambda$

Basis Light-front Quantization

Table I: Basis truncation parameters and model parameters

N _{max}	K _{tot}	$\alpha_{\rm s}$	к(GeV)	m _{l/k} (GeV)	m _{l/g} (GeV)	m _{b/k} (GeV)	m _{b/g} (GeV)
10	32	$0.57 {\pm} 0.06$	0.337	0.30	0.20	5.05	4.95
T. Peng et al. PRD 106, 114040 (2022)							

Table II: Mass spectra

Baryons	M _{BLFQ} (MeV)	M _{exp} (GeV)	
$\Lambda_{ m b}$	5624±2	5619.60±0.17	ground state
Σ_{b}	5636±2	$\begin{array}{c} 5810.56 {\pm} 0.25 \ (\Sigma_{\rm b}{}^{+}) \\ 5815.64 {\pm} 0.27 \ (\Sigma_{\rm b}{}^{-}) \\ \dots (\Sigma_{\rm b}{}^{0}) \end{array}$	first excited state

PDG: $\Lambda_b^0 = udb$, $\Sigma_b^0 = udb$, $\Sigma_b^+ = uub$, $\Sigma_b^- = ddb$

Numerical results to support the solved LFWFs

Flavor electromagnetic FFs

$$\langle P+q,\uparrow|\frac{J^+(0)}{2P^+}|P,\uparrow\rangle = F_1(Q^2),$$

 $\langle P+q,\uparrow|\frac{J^+(0)}{2P^+}|P,\downarrow\rangle = -\frac{(q_1 - iq_2)}{2M}F_2(Q^2)$

Baryon electromagnetic FFs

$$\begin{split} F^{\rm B}_{1(2)}(Q^2) &= \sum_q e_q F^q_{1(2)}(Q^2) \\ G^{\rm B}_E(Q^2) &= F^{\rm B}_1(Q^2) - \frac{Q^2}{4M^2} F^{\rm B}_2(Q^2), \\ G^{\rm B}_M(Q^2) &= F^{\rm B}_1(Q^2) + F^{\rm B}_2(Q^2). \end{split}$$

Parton Distribution Functions

$$\Phi^{\Gamma(q)}(x) = \frac{1}{2} \int \frac{\mathrm{d}z^-}{4\pi} e^{ip^+ z^-/2} \\ \times \left\langle P, \Lambda | \bar{\psi}_q(0) \Gamma \psi_q(z^-) | P, \Lambda \right\rangle \Big|_{z^+ = \vec{z}_\perp = 0}$$

With Γ being $\gamma^+, \gamma^+\gamma^5, i\sigma^{j+}\gamma^5$, one can have different PDFs.

- Proton results: S. Xu et al. PRD 104, 094036 (2021)
- A and Λ_c results: T. Peng et al. PRD 106, 114040 (2022)

Flavor Dirac form factors

- ➢ Heavier quark contributes more to Dirac FFs.
- Heavy quark distribution increases when the mass increases.

Flavor Pauli form factors

- Light quarks almost dominate in samll Q² region.
- Along with the increase of Q², contributions from light quarks drop rapidly and being lower than that from heavy quark.

Baryon electromagnetic form factors

 G_E and G_M are influenced by the constituent charges, so we choose Λ (uds) to compare with.

 \succ Sach's electric FFs G_E

• Heavier quark mass brings a rapider peak at small Q² region and slower going back to near zero with Q² increases.

10/21

 e_d

 e_b

 $e_u =$

 $e_s =$

Baryon electromagnetic form factors

For $\Lambda_{\rm b}$: The peak at the small Q² region is • influenced by the lower Pauli FFs and higher Dirac FFs of the heavy quark.

11/21

 $e_d =$

 $e_u =$

 $\overline{3}$,

Magnetic moments

Baryons	μ _{BLFQ}	[1]	[2, 3]	[4]	[3]	[5]	[6]
Λ_{b}	-0.0562 ± 0.0002	-0.0620	-0.060	•••	-0.066	-0.060	•••
$\Sigma_{\mathbf{b}}^{0}$	0.6719 ± 0.0023	0.5653	0.640	0.659	0.422	0.603	0.390
Σ_b^+	3.4809 ± 0.0085	2.1989	2.500	2.575	1.622	2.250	1.590
Σ_{b}^{-}	-2.1372 ± 0.0040	-1.0684	-1.220	-1.256	-0.778	-1.150	-0.810

 $\mu = G^B_{\rm M}(0)$

Charge radius and magnetic radius

ryons	r_{E}^{2}	Λ	r_M^2	Λ	$\left\langle r_{\rm E}^2 \right\rangle^{\rm B} = -\frac{6}{C^{\rm B}(\alpha)} \frac{\mathrm{d}G_{\rm E}^{\rm B}\left(Q^2\right)}{10^2}$
$\Lambda_{\rm b}$	0.8944 ± 0.0145	0.07	-13.7106 ± 0.1743	0.52	$G_{\rm E}^{\rm B}(0) \mathrm{d}Q^2$
$\Sigma_b{}^0$	1.0066 ± 0.0165	0.07	4.1193 ± 0.0589	0.82	$c = 6 dC^{B} (O^{2})$
Σ_b^{+}	4.0509 ± 0.0664	0.79	3.1865 ± 0.0426	0.79	$\left\langle r_{\mathrm{M}}^{2} \right\rangle^{\mathrm{B}} = -\frac{0}{G_{\mathrm{M}}^{\mathrm{B}}(0)} \frac{\mathrm{d}G_{\mathrm{M}}(Q)}{\mathrm{d}Q^{2}}$
$\Sigma_{\rm b}^{-}$	2.0375 ± 0.0334	0.65	2.5996 ± 0.0332	0.70	

[1]A. Hazra et al. PRD 104, 053002 (2021) [2]J. Franklin et al. PRD 24, 2910 (1981)
[3]A. Bernotas et al. arXiv:1209.2900 (2012) [4]N. Barik et al. PRD 28, 2823 (1983)
[5]V. Simonis et al. arXiv: 1803.01809 (2018) [6]L. Meng et al. PRD 98, 094013 (2018)

Unpolarized PDFs f(x)

$$f^{q}(x) = \sum_{\lambda_{i}} \int \left[\mathrm{d}\mathcal{X} \, \mathrm{d}\mathcal{P}_{\perp} \right] \\ \times \Psi^{\uparrow *}_{\{x_{i}, \vec{p}_{i\perp}, \lambda_{i}\}} \Psi^{\uparrow}_{\{x_{i}, \vec{p}_{i\perp}, \lambda_{i}\}} \delta\left(x - x_{q}\right)$$

- Heavier quark gives more contribution.
- Heavier quark concentrates on larger x.

15/21

Helicity PDFs $g_1(x)$

$$g_1^q(x) = \sum_{\{\lambda_i\}} \int [d\mathcal{X} d\mathcal{P}_{\perp}] \\ \times \lambda_1 \Psi_{\{x_i, \vec{p}_{i\perp}, \lambda_i\}}^{\uparrow *} \Psi_{\{x_i, \vec{p}_{i\perp}, \lambda_i\}}^{\uparrow} \delta(x - x_1)$$

• Different spin structure

• For Λ_b (ground state): b quark spin dominates the total spin of the bound state.

• For Σ_b (first excited state): light quarks also have contributions.

Evolved PDFs

• DGLAP evolution

Initial scale (GeV)				
$\mu_{\rm h}$	1.90 (UV cutoff)			
m _q	5.05			

J. Lan et al. PRD 102, 014020 (2020)

Final scale (GeV)				
μ_1	20 (EicC)			
μ_2	80 (eRHIC)			

18/21

Evolved PDFs

Conclusion and prospect

- ≻We obtain the masses comparable to experiment and the LFWFs of Λ_b and its isospin triplet baryons.
- ➢Our prediction of their EM properties is in agreement with other theoretical calculations.
- >We investigated their longitudinal structure with PDFs.

With the LFWFs of Λ_b and proton, we will calculate TFFs.

Thank you

$$egin{aligned} H_{
m LF} \ket{\Psi} &= M^2 \ket{\Psi} \ & \ H_{
m LF} &= H_{
m eff} + H'. \end{aligned}$$

$$\begin{split} H_{\text{eff}} &= \sum_{i=1}^{3} \frac{\vec{k}_{i\perp}^{2} + m_{i}^{2}}{x_{i}} + \frac{1}{2} \sum_{i \neq j}^{3} V_{i,j}^{\text{conf}} + \frac{1}{2} \sum_{i \neq j}^{3} V_{i,j}^{\text{OGE}}, \\ V_{i,j}^{\text{conf}} &= \kappa^{4} \Big[\vec{r}_{ij\perp} - \frac{\partial_{x_{i}} (x_{i}x_{j}\partial_{x_{j}})}{(m_{i} + m_{j})^{2}} \Big] \\ V_{i,j}^{\text{OGE}} &= \frac{4\pi C_{F} \alpha_{s}}{Q_{ij}^{2}} \bar{u}_{s_{i}'}(k_{i}') \gamma^{\mu} u_{s_{i}}(k_{i}) \bar{u}_{s_{j}'}(k_{j}') \gamma^{\mu} u_{s_{j}}(k_{j}) \end{split}$$

$$H' = \lambda_L (H_{\text{c.m.}} - 2b^2 I)$$
$$H_{\text{c.m.}} = \left(\sum_{i=1}^3 \vec{k}_{i\perp}\right)^2 + b^4 \left(\sum_{i=1}^3 x_i \vec{r}_{i\perp}\right)^2,$$