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CGC and BK equation Gluon saturation in the small x region

Gluon saturation in the small x region

Gluon saturation: one of the major goals of the EIC to address.

Ensuring unitarity for QCD or any non-Abelian theory.

Initial condition for heavy-ion collisions, etc.
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CGC and BK equation Gluon saturation in the small x region

Gluon saturation in the small x region

The strong rise (orange dashed line) in
small k2T region, predicted by the
Balitsky-Fadin-Kuraev-Lipatov (BFKL)
equation violates the unitarity.

When the transverse momentum kT smaller
than the saturation scale Qs, that is

k2 ≡ k2T < Q2
s(x).

The gluons start to recombine, regulating
the infra-red divergence in the linear BFKL .

The existence of energy dependent
saturation scale is prediction of CGC.

Ciafaloni, Colferai, Salam, Stasto (CCSS)

WL, Stasto ’22
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CGC and BK equation BK equation in the coordinate and momentum space

BK Equation in the Dipole Model

The BK equation in the coordinate space:

∂N(r, b, x)

∂ ln(1/x)
= ᾱs
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N(r, b, x) is the dipole amplitude,
r is the size of the dipole,
b is the impact parameter.

Dipole scattering in DIS.

The linear terms in the first two lines are BFKL terms

The (N ·N) term in the last line corresponds to the non-linear
evolution.
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CGC and BK equation BK equation in the coordinate and momentum space

BK Equation in the Momentum Space

The BK equation in the momentum space:
Kutak, Kwiecinski ’03; Nikolaev, Schafer ’06; Bartels, Kutak ’08.

F(x, k2) = F(0)(x, k2) + αs
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The F(x, k2) is the unintegrated gluon density, related to the usual gluon
PDF g(x, k2) in double leading log approximation (DLLA) by

F(x, k2) =
d

dk2
xg(x, k2).

The arguments of the running coupling αs are associated with unintegrated
gluon density respectively.

R is the size of the hadron’s radius, Nc is the number of colors.
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Resummations to the BK equation

Resummations

To summarize the structure of our resummed equation, we give

F(x, k2) = F (0)(x, k2) +Kres ⊗F(x, k2)− V ⊗ F2(x, k2).

F (0)(x, k2) is the initial condition,
V ⊗ F2(x, k2) is the nonlinear term.

Kres ⊗F(x, k2) is the resummed linear term

Kres ⊗F = Kkc
0 (z;k,k′)

z,q
⊗ F(

x

z
, k′) +Kcoll

0 (z; k, k′)
z,k′

⊗ F(
x

z
, k′) ,

‘kc’ stands for kinematical constraints,
‘coll’ stands for the collinear DGLAP evolution.
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Resummations to the BK equation Kinematical Constraints

Kinematical Constraints

x(1z − z), qT

x, kT

x
z , k

′
T

Kwiecinski, Martin, Sutton ’96

Andersson, Gustafson, Samuelsson ’96

The kinematical constraints can take different
form due to the what approximation
implemented, we use the first one below:

k′2 <
k2

z
,

q2 <
k2

z
,

q2 <
1− z

z
k2.

The Kinematical constraints are due to that
dominance of the transverse momentum in the
small x region.
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Resummations to the BK equation Kinematical Constraints

Kinematical Constraints in the BFKL equation

The kinematical constraint implement in the BFKL equation as

Kkc
0 (z;k,k′)

z,q
⊗ F

(x

z
, k′

)
=

∫ 1

x

dz

z

∫
d2q

πq2
ᾱs(q

2)

[
F
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z
, |k + q|

)
Θ

(
k2

z
− k′2

)
−Θ(k − q)F(

x

z
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]
.

χeff is the Pomeron intercept from the BFKL kernel in the Mellin space, indicating the
power growth of the Reggeized cross section σ ∼ sχeff with χLO BFKL

eff = 4 ln 2 αs.
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Resummations to the BK equation DGLAP Splitting Functions

Implementing DGLAP Splitting functions

The resummation techniques that resums collinear and small x
logarithms has been developed by several groups: Altarelli-Ball-Forte
(ABF); Ciafaloni-Colferai-Salam-Stasto (CCSS), Thorne-White (TW).

The DGLAP evolution is implemented as

Kcoll
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z
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)
=
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z
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.

The two terms corresponds to the collinear and anti-collinear
contribution, where the non-singular part of the splitting function is

P̃
(0)
gg = P

(0)
gg −

1

z
,
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Structure Function from the kT Factorization

Structure Function from the kT Factorization

The structure function F2 from the kT
factorization is given by

F2(x,Q
2) =

∑
q

e2q Sq(x,Q
2) ,

where the sum is over the quark flavors and
general expression for Sq(x,Q

2) is

Sq(x,Q
2) =

∫ 1

x

dz

z

∫
dk2Sq

box(z,m
2
q , k

2, Q2)F
(x

z
, k2

)
.

k is the gluon transverse momentum,
κ is the quark transverse momentum.

DIS in the kT factorization.
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Structure Function from the kT Factorization

Perturbative Contributions

The off-shell photon-gluon partonic calculation gives

Sq(x,Q
2) =

Q2

4π2

∫
dk2

k2

∫ 1

0

dβ

∫
dκ′αs

{[
β2 + (1− β2)

]
(

κ

D1q
− κ− k

D2q

)2

+
[
m2

q + 4Q2β2(1− β)2
]

(
1

D1q
− 1

D2q

)2
}
F
(x
z
, k2

)
Θ
(
1− x

z

)
.

The shifted quark transverse momentum is κ′ = κ− (1− β)k.

The energy denominators are

D1q = κ2 + β(1− β)Q2 +m2
q ,

D2q = (κ− k)2 + β(1− β)Q2 +m2
q .
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Structure Function from the kT Factorization

Non-perturbative Contributions

Depending on the values of transverse momenta k, κ and a typical
perturbative cut k0 ∼ 1GeV, following (Kwiecinski, Martin, Stasto ’97), the
perturbative and non-perturbative contributions can be categorized:

Sq = S(a)
q + S(b)

q + S(c)
q .

S
(a)
q : k2 < k20, κ2 < k20 ; Modeled soft Pomeron contribution.

S
(b)
q : k2 < k20 < κ2 ; Previously modeled with collinear approximation.

We extend the lower bound k2min ≪ k20 in the BK evolution to capture
this contribution into the perturbative calculation, where the running
coupling is frozen when k2 < k20.

S
(c)
q : k2 > k20 ; Perturbative contribution from the kT factorization.
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Structure Function from the kT Factorization

The Fit to the Structure Function

We employ Golec-Biernat-Wuesthoff (GBW) inspired initial condition

F (0)(x, k) = A(1− x)αxβ
αs(k

2)

2

(
k2γ1e−B2

1k
2
+

1

k2γ2
e−B2

2/k
2

)
.

The soft Pomeron contribution is parametrized as

S(a)
q = CIP x−λ (1− x)8.

We fit to the HERA F2 data (2010), with χ2/dof = 1.54. Together
with ΛQCD and proton’s radius R, the parameters are given as follows

Parameters α β A B1 B2

Values 1.35 -0.425 1.245 0.436 1.50

γ1 γ2 R2 ΛQCD Cp λ

0.400 1.04 7.975 0.291 0.453 -0.0473
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Fit to Experimental Data

The Fit to the Structure Function

Fit describes a wide range of Q2.
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Fit to Experimental Data

The Fit to the Structure Function

BK without DGLAP BK + DGLAP (our fit)

Dipole BK fits from Sanhueza, Carrido, Guevara, 2024.

Including DGLAP on top of small x evolution enables a better fit for a wider
range of Q2.
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Fit to Experimental Data

The Fit to the Reduced Cross Section

Fit to the HERA reduced cross sections (2015) yields χ2/dof = 1.82.
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Fit to Experimental Data

The Unintegrated Gluon Density

Kutak, Sapeta ’12; WL, Stasto ’22.
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Our approach with an extensive range of k2 allows the extracting of
the saturation scale Q2

S .
The saturation scale corresponds the k2 position for max unintegrated
gluon density.
One can see the Q2

S increases when x decreases, as expected from the
map of high energy QCD.
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Conclusion

Conclusion

We implement the kinematical constraint and DGLAP resummation
into the BK evolution.

We achieve good fits to the structure functions and reduced cross
sections, while the unintegrated gluon density is extended to low
values of transverse momenta.

Information of saturation scales can be extracted from our fit.

Future Plans

Further implement the resummations in the dipole formalism.
Incorporating of the CCSS resummation with NLL BFKL into the
framework.
Extend the study to the nuclei.
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