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Motivations of this paper

QFT with negative energy
The IR behavior of D=4 N=4 SYM on S' 1s d=3 pure YM theory
The negative Casimir energy of a gauge theory
~ The mass of an AdS soliton

DOF from EE (e.g. the coefficient of the A-type anomaly for a spherical
entangling surface in CFT, )

Renormalized EE with a spherical entangling
The entropic C function from the EE with the striped subsystem




Motivations of this paper

What is difference between two entropy? — trace anomaly part

Renormalized EE only contains either A-type or B-type anomaly

Entropic ¢ function contains both A-type and B-type anomalies




The entanglement entropy (an extension of the thermal
_entropy)

System whose total Hilbert space is a direct product:
H = H,®H;

Definition of the reduced density matrix p, = Trg(p) taking the trace over Hp

Entanglement Entropy (EE) defined using the density matrix p, as

Sa = —Try(palogps)

Von Neumann entropy of p,

In QFT, A and B: often a spatial bipartition of a system 6




The UV structure of entanglement entropy

Syv with the entangling surface St x 473 vs Sy o with the surface S%72

The UV structure of entanglement entropy is

L 4, Area(04)
Suv = 7 Suv,o SO~y Ja-1
1 . +subleading terms
Sren = 5 fa(ROR)RSpp = La(ROR)SEE

1
(d — 2)“R8R{R8R —2)...(ROr — (d = 3))5gE, d= odd,

(d _12)!! (ROp +1)(ROr —1)...(RIp — (d —3))SEE, d = even,

1

— a5
fa(Rop)Sgy =4 472!

= Q)HRBR(RnﬁR —2)...(RIp— (d—2))SY), d=even.

(ROp —1)(R9p —3) ... (R — (d—2))SY), d=odd,




The UV structure of entanglement entropy
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Equivalent to D-1 dimensional renormalized entanglement entropy on RV4~2




Odd dimensional results

Sren = ROpSgpr for d =3,
1

Srenn = gRﬁH{RiﬂR — 2)Sgrg  for d = 5.

Through Kaluza-Klein reduction along S, the renormalized entanglement
entropy effectively embodies d-1 dimensional one in the low-energy limit

In systems respecting Lorentz symmetry, the 2-dimensional entropic c-
function C = R 95/, is both non-negative and monotonically decreasing

The behavior of the 4d renormalized entanglement entropy displays non-
monotonic tendencies




Renormalized entanglement entropy of 4d QFT
(even dimensional results)

The length scale R; of the subregion related to rescaling of the metric
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The AdS soliton dual to confining theory

The double Wick rotation of the AdS black hole

It corresponds to the ground state of

ds? = ( dt? + ()+f(u)d<p + Y dxtdxh),

u
where f(u) =1 — (1)4

Ug

\g

The mass of the AdS soliton = negative energy /




The AdS soliton with a background gauge field

The metric of the AdS soliton with a background gauge field

L2, ds? Elziaﬁ PR Elziaﬁ 2\ 2(d—1)
2 2 2 2 =1 — R -
ds2, | = (” ; + fa(2)do" — dt* + dR + R2d0, 3) falz) =1 (1+ g )(z+) =) (2_+) :
_ (d-1giL?
ag a constant gauge field and Y2 TN

The Kaluza-Klein mass

1 e1ld—2)2%a
My =——(d- = 2)z4 )>0
Az, ~2
. . 2mM
The solution exists if ag < — o — g,

yald-2)




The boundary energy

M = (Tyo)Va-2/My

Vi o L 1G,
) 2..d
Mo 2k 25

The boundary energy changes the sign when we change Wilson lines a,,

M =

g = 1 — (:+E..;.)E

For a, =0, 1t realizes

M<0 zias<1 Casimir energy of 4d SYM
' theory.

. N . Casimir energy 1s different

M = U +0g =~ 1 among periodic and anti-

periodic b.c.




The holographic entanglement entropy

The boundary region S* x S473:R=1land 0 < ¢ < L,

-3

The surface action: A= f 2L = Qq_3 Lol f dzfj_l 1+ R

Boundary conditions:
Disk type: R(z,) = 0,R'(z,) = 0  Acylinder: z; = z,

AN




The coefficient a, in d=4

) |

| | ,2 . 2 N
The AdS boundary expansion:  F(z) =1— 5 +ayll)2" + g log - +...
a.(l) must be determined by o o T T
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the IR boundary condition o, _m_/
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Left: a, = i/2 Right: a, =1/ 5

For small 1, disk type surface is favored
For large 1, cylinder type surface is favored




HEE in 4d

Finite part of HEE shows HEE with the Wilson line increases (vs
confinement)
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Left: from agp = é, O,%, 1 /\/E from the left to the right

Swallow tail phase transition




An interpretation of HREE

The renormalized EE can capture effective DOF on S’:
EE can detect effective DOF  if E~1/1>M,
EE can not detect effective DOFif E~ 1/l <M,

.F'E-}Sr-:n 20 1) Saf | ! jl.ﬁn
m —diay(l) — 20°aj(l) TR

@4’_}—2{3{[&{5] 1 2_]'"! Uag(l")dl

Breaking conformal invariance

Terms brought from the Weyl anomaly (B-type anomaly)




Renormalized EE 1n 4d

REE corresponds to effective DOF from EE with spherical surface
REE non-monotonically behaves near critical lengths

Sren
4
2
\\K'\. = 1:_
E \‘.“‘". .-..-..--.--hh‘x E
e e e — Myl e B s )
0.10} 0.15 ur-.,zt)vﬁﬁ 0.30 035 DA0045 - 0.20 o.zli/aﬁu 0.35 W
: 1 i \
=1 ' _1-_
ay, = % 0, :g“ - ?15 from the 1'_\[‘1? Fﬂ th_u righ_t My =1/m, 2/5, 3/5 from the right to the left

It implies that Wilson lines make particles light
Massive modes decouple others soon




Renormalized EE 1n 3d

3d: REE 1s positive and monotonically decreasing.
consistent with the entropic ¢ function € = 45/, in R'1
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Spectrum of spin 0** glueball-like operators for d=4

<+ Decrease with increase of energy M (also in other dimensions)

DG M — l 2
“ My = m? =116, 345 690, 115...  for ag =0,
1
m? =360, 11.1, 224, 373,... foraz=—,
R
m? =198, 58 115 192 _.. for ag = i.
“ Myg=0 m® =052, 094, 160, 249,... for ag=i/2,
(the extremal case) o gy 99y 229 w97 jur ag =i,

m? = 4.75, 9.80, 182, 309,... foray=2i
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Discussion

Generalized entropic C function

Renormalized EE 19-1ds
cCW=—=
V dl

Increase at a region
However, S,.,(I = 0) = S,.,,(l = o)
(Decrease and positive for d=3)

Increase at a region and positive
However, S,.,(I = 0) = S,.,,(l = o)

Counting the effective DOF of Wilson lines along  Counting the effective DOF of Wilson lines along
the S direction the S direction

Quantum phase transition Quantum phase transition




Generalized entropic C-function of SU(3) Yang-Mills theory on the

lattice Itou-Nagata-Nakagawa-Nakamura-Zakharov ‘15
0.4  KEntropic C function
0.3 ¢ . 3 The black line: C=2.06
0.2F *Hﬁvj@% :
0.1F RT3 , ,
< of 3 Decrease 1n the middle 1=0.88 fm
O-01F s & % ][
gg : E:'g;}iﬁ%{ﬁ > : Agreement with the critical
0.4 _ %i%ﬁ o _ 1t\zmperature T-1 =0.714fm (T, = 280
05002 04 06 08 1 eV)

/ [fm] and the Lambda scale Ay ~0.8 fm

The critical length of our holographic model: I~Mg* (Mg~T,, Ay)
However, our holographic model is relevant to large N YM only in the IR region.
"Dual theory consists of many matter fields
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Thank you!




