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Hadronic energy-momentum tensor

■ Hadronic energy-momentum tensor encodes the energy-stress information of
hadrons

■ In principle, hadronic EMT can be probed in scattering off gravitons
■ Factorizing hadronic matrix elements to get gravitational form factors (GFFs):

[Kobzarev:ŴżŹŵwt, Pagels:ŴżŹŹzza]

⟨p′, s′|Tµν(0)|p, s⟩ = 1

Mūs′(p′)
[
PµPνA(q2) + 1

2
iP{µσν}ρqρJ(q2) + 1

4
(qµqν − gµνq2D(q2))

]
us(p)
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Experimental approach review:[Polyakov:ŵųŴŻzvc, Burkert:ŵųŵŶwzr]

■ Ji’s sum rules: second Melin moments of GPDs, e.g., [Ji:ŴżżŹnm, Polyakov:ŵųųŵyz]∫ 1

−1

dx xHa(x, ξ, t) = Aa(t) + ξ2Da(t),
∫ 1

−1

dx xEa(x, ξ, t) = Ba(t)− ξ2Da(t)

• Deeply virtual Compton scattering (DVCS) & hard exclusive meson production
[Burkert:ŵųŴŻbqq, Burkert:ŵųŵŴith]

■ Di-photon pair production [Kumano:ŵųŴźlhr]

■ Near threshold vector meson production [Kharzeev:ŵųŵŴqkd, Duran:ŵųŵŵxag]

[Lattice ’ŵŶ: Hackett:ŵųŵŶnkr]
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Last global unknown
■ Conervation laws constrain GFFs except GFF D [Cotogno:ŵųŴżxcl, Lorce:ŵųŴżsbq]

A(0) = 1, J(0) = 1

2
, lim

Q2→0
Q2D(Q2) = 0 ⇒

∫
d3rP(r) = 0

the von Laue condition implies hadrons are in mechanical equilibrium [Laue:ŴżŴŴlrk]

■ Polyakov et al. conjectured thatD < 0 for mechanically stable systems [Polyakov:ŵųŴŻzvc]

D =

∫
d3rr2P(r)

???
< 0
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Light-front densities

■ Light-front density is a true 2D distribution

OLF(⃗r⊥) =
∫ d2q⊥

(2π)2
e−i⃗q⊥ ·⃗r⊥⟨P + 1

2 q⃗|Ô(0)⊥|P − 1
2 q⃗⟩, Ô (⃗x⊥) =

1

2

∫
dx−O(x)

■ Light-front densities show what the probes “see” in high-energy collision
experiments [Burkardt:ŵųųųza]

T αβ (⃗r⊥;P) =
∫ d2q⊥

(2π)2
e−i⃗q⊥ ·⃗r⊥ tαβ (⃗q⊥;P)

where, the hadronic matrix elements are,

tαβ (⃗q⊥;P) =
1

2P+
⟨P+ 1

2q|Tαβ(0)|P− 1
2q⟩

light-front coordinates:
v± =v0 ± v3

v⃗⊥ =(v1, v2)
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Energy and momentum densities
Momentum (µ = +, 1, 2) and energy densities (ν = −):

∫
d3xT+µ(x) = Pµ

Pµ(r⊥) ≡T +µ(r⊥;P) = PµA(r⊥),

P−(r⊥) ≡T +−(r⊥;P) =
P2
⊥A(r⊥) +M2(r⊥)

P+

where (for spin-0),

A(r⊥) =
∫ d2q⊥

(2π)2
e−i⃗q⊥ ·⃗r⊥A(q2⊥),

M2(r⊥) =
∫ d2q⊥

(2π)2
e−i⃗q⊥ ·⃗r⊥

[
(M2 +

1

4
q2⊥)A(q2⊥) +

1

2
q2⊥D(q2⊥)

]
■ A(r⊥) can be interpreted as the matter/momentum density
■ Notice P− = (P2

⊥ + M2)/P+,M2(r⊥) can be interpreted as the distribution of the
invariant mass squared
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Physical densities [Li:ŵųŵŵldb,Li:ŵųŵŷvgv]

Inspired by the EMT of relativistic spin medium, we identify the hadronic EMT as,
T αβ ≡ EUαUβ − P∆αβ + 1

2∂σ(U
{αSβ}σ) +Παβ

We can extract both the Breit-frame densities and the 2D light-front densities from above
decomposition, and the light-front densities are,

energy density: E(r⊥) = M
∫ d2q⊥

(2π)2
e−i⃗q⊥ ·⃗r⊥

{(
1 +

q2⊥
4M2

A(q2⊥)
)
+

q2⊥
4M2

[
D(q2⊥)− 2J(q2⊥)

]}
pressure: P(r⊥) = − 1

6M

∫ d2q⊥
(2π)2

e−i⃗q⊥ ·⃗r⊥q2⊥D(q2⊥)

spin density: Sαβ(r⊥) =
∫ d2q⊥

(2π)2
e−i⃗q⊥ ·⃗r⊥

{
iσαβ

√
1 +

q2⊥
4M2

− U[αqβ]
2M

}
J(q2⊥)

shear density: Παβ(r⊥) =
1

4M

∫ d2q⊥
(2π)2

e−i⃗q⊥ ·⃗r⊥(qαqβ +
q2⊥
3
∆αβ)D(q2⊥)

where, Uα = i
↔
∂α/

√
4M2 − q2, ∆αβ = gαβ − UαUβ
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Covariant analysis of EMT on the light cone [Cao:ŵųŵŷrul]

The hadronic matrix elements of spin-0 particles read,

⟨p′|Tαβ
i (0)|p⟩ = 2PαPβAi(−q2) + 1

2
(qαqβ − q2gαβ)Di(−q2) + 2M2gαβ c̄i(−q2)

+
M4ωαωβ

(ω · P)2 S1i(−q2) + (VαVβ + qαqβ)S2i(−q2)

where, P = (p′ + p)/2, q = p′ − p. ωµ = (ω+, ω−, ω⃗⊥) = (0, 2, 0⃗) indicates the orientation of
the quantization surface. Vector Vα is defined as Vα = εαβρσPβqρωσ/(ω · P).

■ In light-front dynamics, some of the Poincaré symmetries are not manifest, which are likely
broken in practical calculations

■ Emergence of spurious form factors S1,2 due to the violation of dynamical Lorentz
symmetries in practical calculations, which usually contain uncanceled divergences
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Components to extract GFFs

■ Hadronic matrix elements within Drell-Yan-Breit frame (q+ = 0, P⃗⊥ = 0):

(2P+)t++
i = 2(P+)2Ai(q2⊥),

(2P+)t+−
i = 2(M2 +

1

4
q2⊥)Ai(q2⊥) + q2⊥Di(q2⊥) + 4M2c̄ i(q2⊥),

(2P+)t12i =
1

2
q1q2Di(q2⊥),

(2P+)(t11i + t22i ) = −1

2
q2⊥Di(q2⊥)− 4M2c̄ i(q2⊥)+2q2⊥S2i(q2⊥)

(2P+)t−−
i = 2(

M2 + 1
4q2⊥

P+
)2Ai(q2⊥)+

4M4

(P+)2
S1i(q2⊥)

■ Identify T++,T+i,T12 and T+− as the “good” currents that are free of spurious
form factors
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Charmonium: “hydrogen atom” of QCD
■ Charmonium is an ideal system to probe the properties of the strong force, which consists of
a pair of charm and anti-charm quark cc̄ .

■ We consider the spin-0 charmonium and adopt charmonium wave functions from basis
light-front quantization (BLFQ) calculations, which was successfully applied to compute a
number of hadronic observables including mass spectra and radiative transitions
[Li:ŵųŴŸzda,Li:ŵųŴźmlw]
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Light-front wavefunction representation of GFF A
■ LFWF representation of A reads, [Brodsky:ŵųųųii]

A(q2⊥) =
∑

n

∑
si

∫
[dxid2ri⊥]n|ψ̃n(xi, r⃗i⊥)|2

∑
j

xjei⃗rj⊥ ·⃗q⊥

The valence parton xj ∼ O(1)mainly contributes to GFFA(q2⊥)
■ All particles’ calculation results satisfy the constraint A(0) = 1

ηc

ηc
′

ηc
′′
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Light-front wavefunction representation of GFF D
■ Total GFF D can be extracted both from T+− and T12

■ T+− is the light-front energy density and should be well renormalized∫
d3xT+−(x) = P−

■ Decomposition of t+−:

t+−(Q2) = t+−
0 (Q2)︸ ︷︷ ︸
kinetic part

+ t+−
int (Q2)︸ ︷︷ ︸

potential part

■ The LFWF representation of the kinetic part is,

(2P+)t+−
0 (Q2) =

∑
n

∑
{si}

∫
[dxid2ri⊥]nψ̃

∗
n({xi, r⃗i⊥, si})

∑
j

ei⃗rj⊥ ·⃗q⊥
− 1

4

↔
∇ 2

j⊥ + m2
j − 1

4q2⊥
xj

ψ̃n({xi, r⃗i⊥, si})

Wee partons (xj ≪ 1) contribute to the kinetic energy
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Difficulties in calculating the potential part

■ Origin from the hamiltonian formalism, we lack the operator representation of T+−
int .

Thus we can’t calculate its LFWF representation directly
■ Notice that T+−

int is exact the light-front potential energy density, we can construct it
by localizing the potential energy operator

O →
∑

i
Oiδ

3(r − ri)︸ ︷︷ ︸
QMBT

■ In relativistic quantum theory, particles can only be localized on the transverse plane
tangential to the light cone, which suffices to specify the hadronic one-body
densities (OBDs)

O →
∑

i
Oiδ

2(r⊥ − ri⊥)︸ ︷︷ ︸
QFT

Charmonium GFFs, Tianyang Hu(IMP) Ŵŷ/ŵŷ Nov. 26th, 2024@LC2024



Potential energy density

■ We adopt the impulse ansatz that all interactions happen at the same instant in
light-front time. This ansatz is expected to be a good approximation for small-size
systems such as charmonium

■ Thus we can construct the potential energy distribution by localizing the effective
potential operator:

(2P+)t+−
int (Q2) =

∑
n

1

n
∑
{si}

∫
[dxid2ri⊥]n

×
∑

j
ψ̃∗

n({xi, r⃗i⊥, si})ei⃗rj⊥ ·⃗q⊥vn({xi,−i
↔
∇i⊥
2

})ψ̃n({xi, r⃗i⊥, si})

where, the potential energy is expressed in terms of the mass eigenvalue and the kinetic

energy vn = M2 −
∑n

j=1(−
1
4

↔
∇

2

j⊥ + m2
j )/xj
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Gravitational form factor D from T+−

Recall the relation (2P+)t+− = M2(q2⊥) = M2 + 1
4A(q2⊥) + 1

2q2⊥D(q2⊥), we can extract
GFF D from mass squared factor

ηc

ηc
′

ηc
′′
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D
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-8

-12
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D
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2 )

■ For all different particles, D-term satisfiesD < 0 and is finite
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Gravitational form factor D from T12

■ T12 is a “good” component to extract GFF D,

(2P+)t12 =
1

2
q1q2D(q2⊥)

■ The light-front wave function representation reads,

(2P+)t12 =
1

2

∑
n

∑
{si}

∫
[dxid2ri⊥]nψ̃

∗
n({xi, r⃗i⊥, si})

∑
j

ei⃗rj⊥ ·⃗q⊥
i
↔
∇ 1

j⊥i
↔
∇ 2

j⊥ − q1⊥q2⊥
xj

ψ̃n({xi, r⃗i⊥, si})

■ GFF D extracted from T12 also satisfies the von Laue condition

ηc
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′

ηc
′′
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GFF D extracted from T+− vs T12

■ The truncations in calculations and the ansatz introduced break the current
conservation, leading to c̄ =

∑
i c̄ i ̸= 0

■ The difference betweenD(q2⊥) extracted from T+− and T12 reflects the degree of
current conservation violation

■ The S-wave charmonium ηc retains more Poincaré symmetries than the P-wave one
χc0
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T12
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Gravitational form factor c̄
■ c̄ i represents the force between the i-th constituent and the rest of the system. A
vanishing total c̄ means all inter-particle forces balance out for an isolated system

■ A non-vanishing c̄ implies that the net force acting on the system is non-vanishing,
closely resembling the effect of the cosmological constant gµνΛ [Teryaev:ŵųŴŹedw]

■ Our results show that this form factor vanishes in the forward limit Q2 = 0, but
remains a small value in the off-forward situation
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Energy density E(r⊥)
Energy density E(r⊥):

E(r⊥) = M
∫ d2q⊥

(2π)2
e−i⃗q⊥ ·⃗r⊥

{(
1 +

q2⊥
4M2

A(q2⊥)
)
+

q2⊥
4M2

D(q2⊥)
}

■ Energy density E(r⊥) is positive
■ The high energy peeks of radial excitation states appear at large r⊥

ηc

ηc
′

ηc
′′

0.0 0.1 0.2 0.3 0.4 0.5 0.6

8

4

0

r⊥[fm]

2π
r ⊥
ℰ
(r

⊥
)/
M
[f
m

-
1 ]
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′
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ℰ
(r
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M
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m

-
1 ]
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Invariant mass squared densityM2(r⊥)
Invariant mass squared densityM2(r⊥):

M2(r⊥) = M2

∫ d2q⊥
(2π)2

e−i⃗q⊥ ·⃗r⊥
{(

1 +
q2⊥
4M2

A(q2⊥)
)
+

q2⊥
2M2

D(q2⊥)
}
= M

[
E(r⊥)−

3

2
P(r⊥)

]
■ More peek values for higher radial excitation states
■ Invariant mass squared densityM2(r⊥) of ηc becomes negative at small r⊥:
tachyonic core within charmonium?

ηc
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′
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Stress within charmonium
Pressure P(r⊥):

P(r⊥) = − 1

6M

∫ d2q⊥
(2π)2

e−i⃗q⊥ ·⃗r⊥q2⊥D(q2⊥)

It is speculted that a mechanically stable system should have a repulsive core with an
attractive periphery.
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′
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■ All particles have an attractive periphery, but χc0 and χ′
c0 also have an attractive core

■ Particles with higher radial excitation have a more complicated mechanical structure
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Physical densities
■ Different physical densities: matter densityA(r⊥), energy density E(r⊥), invariant mass
squared densityM2(r⊥) and scalar density θ(r⊥) = T α

α(r⊥) = E(r⊥)− 3P(r⊥)
■ Because of D < 0, there is a chain of inequalities about their root mean square radii

rA < rE < rM2 < rθ
where,
r2A = −6A′(0), r2E = r2A − 3

2λ
2
C(1 +D), r2M2 = r2A − 3

2λ
2
C(1 + 2D), r2θ = r2A − 3

2λ
2
C(1 + 3D)
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Summary
■ Hadronic energy-momentum tensor encodes the energy-stress information of
hadron

■ We compute gravitational form factors of spin-0 charmonium and extract
corresponding physical densities

■ From physical distributions we find novel behaviors in charmonium: the tachyonic
core in ηc, the attractive core in χc0 and the multi-layer structure of charmonium

■ Our methods can be applied to other systems, such as the more complicated nucleon
and the high spin J/ψ

Thank you!
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