Contribution ID: 130 Type: Oral Talk

Reduction of ¹⁴⁶Sm-¹⁴²Nd chronology in the early solar system

Sunday, 8 September 2024 12:00 (15 minutes)

The 146 Sm, as an extinct p-process isotope, plays an irreplaceable role in the time-line construction of the early solar system (ESS) and the geochemical tracing via its α decay to 142 Nd. However, the measured half-life of 146Sm is still debated, which can result in a large uncertainty in the initial 146Sm abundance in the ESS and subsequent dating of planetary events after the birth of the Sun. In this study, this half-life is reported to be 64.2±10.1 million years based on a comprehensive analysis via both the state-of-the-art techniques on the α decay process and the local extrapolation from neighboring isotopes. More importantly, this procedure is actually regardless of the α -daughter potential, convincing a model-independent half-life of 146 Sm. The initial 146 Sm/ 144 Sm ratio of 0.0094–0.0003 +0.0005 at 4568 Ma, corresponding to the formation of solar system, is then determined, further leading to a reduced timescale for various planetary silicate mantle differentiation events of the ESS, paving the way for a calibrated 146 Sm- 142 Nd chronometer in future studies of nucleosynthesis, earth and planetary astrophysics.

Primary author: QIAN, Yibin (Nanjing University of Science and Technology)

Presenter: QIAN, Yibin (Nanjing University of Science and Technology)Session Classification: Theoretical Nuclear Physics for Astrophysics