Contribution ID: 125

Type: Poster

Development of enriched ¹²C CVD diamond targets for astrophysical ¹²C(α , γ)¹⁶O reaction measurements

Monday, 9 September 2024 16:48 (1 minute)

The ${}^{12}C(\alpha, \gamma)^{16}O$ reaction is a pivotal process in nuclear astrophysics. Due to its extremely low cross section (~10⁻¹⁷ barn) within the Gamow window, directly measuring this reaction is highly challenging. An irradiation-resistant ${}^{12}C$ -enriched target is a key technique for the direct measurement of the ${}^{12}C(\alpha, \gamma)^{16}O$ reaction. In this work, we developed a ${}^{12}C$ -enriched diamond target on Mo substrates using the chemical vapor deposition (CVD) method. The target demonstrates excellent stability under bombardment with a high-intensity proton beam. A 1.5% deterioration in ${}^{12}C$ thickness was observed after bombardment by a 270 keV, 2 mA proton beam with a charge of 125 C, indicating a significant improvement over typical carbon targets. The ${}^{13}C/{}^{12}C$ ratio in the target was determined to be $(1.1 \pm 0.3) \times 10^{-4}$, indicating no contamination was introduced during the CVD process. A method for determining the hydrogen content in coatings based on nuclear reactions is presented. The upper limit of the hydrogen content in the diamond 12C-enriched target was found to be 0.075%. The irradiation-resistance capacity and isotopic purity of the target meet the requirement for direct measurement.

Primary author: DONG, Jingyu (CIAE)Presenter: DONG, Jingyu (CIAE)Session Classification: Poster presentation