Contribution ID: 80 Type: Poster

Direct measurement of the $^{15}{\rm N}(p,\gamma)^{16}{\rm O}$ cross sections at low energy

Monday, 9 September 2024 16:37 (1 minute)

The CNO cycle is the primary energy production mechanism in massive stars, with the $^{15}N(p,\gamma)^{16}O$ reaction serving as a crucial branching point connecting the CN and NO cycles. The ratio of reaction rates between $^{15}\text{N}(p,\gamma)^{16}\text{O}$ and $^{15}\text{N}(p,\alpha)^{12}\text{C}$ directly determines the nitrogen and oxygen abundances within the CNO cycle, which in turn affect stellar evolution and nucleosynthesis. However, there is significant discrepancy in the existing low-energy experimental data for the $^{15}{\rm N}(p,\gamma)^{16}{\rm O}$ reaction cross-section. This work remeasured the 15 N $(p,\gamma)^{16}$ O reaction using the 350 keV accelerator at INEST (the Institute of Nuclear Energy Safety Technology nology), in the energy range E_p =110-260 keV. We used the FCVA (Filter Cathodic Vacuum Arc) technology to enrich Ti 15 N targets and measured the target thickness by scanning the resonance of 15 N $(p,\alpha\gamma)^{12}$ C at E_{cm} =842 keV. The 4π -BGO detector array can effectively absorb nearly all the -rays produced by the reaction. The detector is shielded and counter-coincident on the outside, which significantly reduces the measurement background. We used γ -ray summing detection techniques and Bayesian analysis method to fit the single spectra and summing spectra, yielding the γ -ray transition branching ratios and the detection efficiency of the summing peak, and further calculated the S-factor. Currently, R-matrix analysis of the $^{15}N(p,\gamma)^{16}O$ data is in progress. In the future, we will conduct low-energy measurements of the $^{15}N(p,\alpha)^{12}C$ direct reaction and calculate the impact of the ratio of these reaction rates on the abundances of nitrogen and oxygen in the CNO cycle.

Click here for poster details

Primary author: WANG, Lin (Beijing Normal University)

Co-author: CHEN, Xin (北京师范大学)

Presenter: WANG, Lin (Beijing Normal University)

Session Classification: Poster presentation

Track Classification: Experimental Nuclear Physics for Astrophysics