Proton --> Neutron

ĺ?/,

6.938 6.9

Sodium

potassiun

Figure: ChETEC

Cosmic radioactivities and Galactic gas dynamics

Roland Diehl

Technical University München and MPE and Origins Cluster emeritus Garching, Germany

Contents:

- 1. Star formation across times: Tracing feedback
- 2. Radioacivity and γ-ray observations

Rb abiau

helium

1.0026

CS CS

Ne neon

18 Ar argon

3. Nucleosynthesis Ejecta: Observing gas dynamics

with work from (a.o.)

Martin Krause, Karsten Kretschmer, Daniel Kröll, Moritz Pleintinger, Thomas Siegert, Rasmus Voss, Wei Wang, r

4

4

1°

The cycle of matter through star formation

The cycle of matter through star formation

²⁶Al γ-rays from the Galaxy

INTEGRAL Cosmic Photon Measurements: The SPI Ge γ-Spectrometer

Coded-Mask Telescope Energy Range 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16°

INTEGRAL/SPI Ge detector spectra

Dominance of instrumental background

²⁶Al γ -rays and the galaxy-wide massive star census

Radioactivities from massive stars: ⁶⁰Fe, ²⁶Al

\rightarrow Messengers from Massive-Star Interiors!

...complementing neutrinos and asteroseismology!

²⁶Al radioactive luminosity ~1 My \rightarrow cumulative from many sources

Processes:

 $\frac{1}{2}$

 \mathbf{A}

 \mathbf{A}

Massive-Star Groups: Modelling long-term phenomenae

- Winds and Explosions
- Nucleosynthesis Ejecta
- Ionizing Radiation
- Get observational constraints from
 - Star Counts
 - ISM Cavities
 - Free-Electron Emission
 - Radioactive Ejecta
 - multi-wavelength studies!

Diffuse radioactivity throughout the entire Galaxy to SPI data Galactic Bottom-Up Modelling

Roland Diehl

Diffuse radioactivity throughout the Galaxy

PSYCO modeling: (30000 sample optimisation)

- → best: 4-arm spiral 700 pc, LC06 yields, SN explosions up to 25 M_{\odot}
- SPI observation: \rightarrow full sky flux (1.84 ±0.03) 10⁻³ ph cm⁻² s⁻¹
- ^Cflux from model-predicted ²⁶Al:
 - \rightarrow (0.5..13) 10⁻⁴ ph cm⁻² s⁻¹ \rightarrow too low
 - Massive-star yields: see disc. in Diehl+2021; Battino+2024 \rightarrow astro
 - Contributions from AGB stars and novae??

Best-fit details (yield, explodability) depend on superbubble modelling (here: sphere only)

Massive Star Groups in our Galaxy: ²⁶Al γ-rays

How massive-star ejecta are spreading...

• ²⁶Al shows apparently higher galactocentric rotation (?)

Kretschmer+(2013)

How massive-star ejecta are spreading...

²⁶Al trajectories in simulations

3D hydrodynamical simulations on kpc scales have become feasible (with sufficient resolution to trace nucleosynthesis events):

- ☆ 128³ cells, cell size 7.8 pc (more-precise than cosmological simulations, but still crude)
- starting fom 'current galaxy' model (Tasker&Tan 2009), no bulge nor spiral arms initially
- star formation by Toomre criterion on single cells, efficiency set tp 1%
- \rightarrow 'map' of a simulated galaxy in radioactive ²⁶Al (and ⁶⁰Fe)

Comparing Observations with Simulations

Biases on both ends:

- ☆ Simulations adopt an idealised Galaxy from a general viewpoint
- Observations are from the Solar-system viewpoint, nearby environment may be special

Use projections that eliminate those biases and focus on general characteristics of the large-scale ISM

→ differences are significant: larger 'chimneys' (SBs) in observations

Pleintinger+ 2019

Position (pc)

Superbubbles in the dynamic interstellar medium: Simulations

Pudritz+ 2024

Superbubbles observed in other galaxies

Orion-Eridanus: A superbubble blown by stars & supernovae

Stellar feedback in the nearerst massive-star region (Sco-Cen)

20.60

35°

30

^{30°} 25° 20°

15°

 10°

350°

Galactic longitude

340°

330°

The stellar groups and population known (kinematics)

no clear coeval subgroups, SF ongoing for ~15+ My; distance~140pc)

The interstellar medium holds a network of cavities

ISM dynamics is not easy to unravel

- ²⁶Al (t~1My) is detected (distributed) \rightarrow can we measure the flow?
- Star formation is seen (Lupus)

 \rightarrow colliding shell boundaries

 \rightarrow "surround & squish" rather than "triggered" star formation

'OMEG conference", Chengdu, China, 07—13 Sep 2024

20 10 0 -10 -20 -30

∆ Glon [arcmin] Center: Longitude 338.90 Latitude 16.76

20 10 0 -10 -20

Longitude 338.95 Latitude 16.72

∆ Glon [arcmin]

²⁶Al and ⁶⁰Fe in the Local Bubble

3D hydro simulations of Local Bubble evolution

²⁶Al predominantly in hot bubble interiors, ⁶⁰Fe deposition at bubble walls

Siegert, Schulreich+,2024

⁶⁰Fe and ²⁴⁴Pu from nearby nucleosynthesis found on Earth

Knie+ 2004, Fimiani+ 2016, Ludwig+ 2016, Koll+ 2019,

+ lunar material probes; + antarctic snow

Wallner+ 2015, 2016, 2021 B Pu (atoms cm⁻² Myr⁻¹) 100 ²⁴⁴Pu 80 τ~80 My 60 40 20 -⁻eMn Crust incoporation rates (at cm⁻² yr⁻¹ ج ت ق FeMn Crust-5 FeMn Crust-2 FeMn Crust-3 4.5 45 ⁶⁰Fe 3.5 **을** 30 3 τ~3.8 My sediment deposit 2.5 2 time period (Ma)

peak of radioactivity influx ≈3 & 6-8 My ago!

What are its sources? How did these traces of nucleosynthesis get here?

Different environments for nucleosynthesis ejecta

☆Supernovae type la
Supernovae type la
Typical t_{evolution} ~ 0.x-1 Gy
outside star forming regions

☆Compact-binary mergers
^③ typical t_{evolution} ~ 1-x Gy
^③ away from galactic disk

☆Note: ISM is mixed by SNe!

Galactic Dynamics and Nucleosynthesis Ejecta -

- Cycling of cosmic gas through sources and ISM is a challenge
 Source afterglows reach aut to ~years (SNe) or few 10,000 y (SNR)
 ²⁶Al is a new useful tracer with radioactive lifetime Myrs
- ☆ ²⁶Al gamma-ray spectroscopy shows new aspects
 - ^{CP 26}Al preferentially appears in superbubbles
 - \rightarrow massive-star ejecta are rarely due to single WR stars or SNe
 - several massive-star groups are consistent with this view
 - The local cavities around the Sun reflect the Sco-Cen group and its activities
 - Solution-up modelling suggests ²⁶Al γ rays from large sky area (~Sco-Cen history)
 - ^{CF 60}Fe is a second radio-isotope for such study seen in γ rays, found on Earth from nearby nucleosynthesis

