

"Other" indirect methods in Nuclear Physics for Astrophysics

Livius Trache for the Nuclear Astrophysics Group IFIN-HH, Bucharest-Magurele, Romania

OMEG17 Chengdu, China, Sep. 8-12, 2024

Nuclear Physics for Astrophysics

a) Direct measurements – reactions at the low energies the reactions occur in stars, or close to, followed by extrapolations

- Difficult because of extremely low cross sections
- Limited combinations of stable beams targets
- b) Indirect methods
 - At higher (x10-1000), more convenient laboratory energies, extract relevant information
 - Select quantities we measure \rightarrow NA reaction rates
 - Can use RIBs
 - ...

Indirect methods in nuclear astrophysics

The incomplete "list" of IMNA

Dedicated methods:

- A. Coulomb dissociation
- B. Trojan Horse Method
- C. Single-particle transfer reactions ANC method
- D. Nuclear breakup reactions S_{17} and S_{18}
- E. Spectroscopy of resonances:
 - Beta-delayed proton emission of ²⁷P
- F. Ion-ion fusion studies: ${}^{13}C + ..., {}^{19}F + ...$
- G. New?! Contribution of excited states
- H. Reactions in laser induced plasmas

breakup of loosely bound nuclei vs rad p-capture

Nuclear breakup

L. Trache, Exotic Beam Summer School 2012

 $\sigma_{(p,\gamma)} \propto (C_{Bp}^{A})^{2} \quad \text{P. Parker, 1962}$ $\sigma_{-1p}^{\text{th}} = \sum \text{SF}(c; nlj) [\sigma_{\text{sp}}^{\text{stripp}}(nlj) + \sigma_{\text{sp}}^{\text{diff}}(nlj) + \sigma_{\text{sp}}^{C}(nlj)],$ $\sigma_{-1p} = [S(1p_{3/2}) + S(1p_{1/2})] \sigma_{sp}(1p_{j})$ For ⁹C case: $= (C_{p_{3/2}}^{2} + C_{p_{1/2}}^{2}) \sigma_{sp}(1p_{j})/b_{p}^{2} \quad \text{L. Trache et al., PRL 2001, PRC 66, 035801 (2002)}$

C(c,nlj) = the ANC of the system ${}^{9}C \rightarrow {}^{8}B+p$ b_p = the single-particle ANC

A. Banu et al., PRC 86, 015806 (2012)

A.I. Chilug @ CSSP2020

S₁₇ for solar neutrino: ANC extracted from ⁸B breakup for ⁷Be(p,γ)⁸B with different interactions (2001, 2004)

Data from:

F. Negoita et al, Phys Rev C 54, 1787 (1996)

B. Blank et al, Nucl Phys A624, 242 (1997)

D. Cortina-Gil e a, EuroPhys J. 10A, 49 (2001).

R. E. Warner et al. – BAPS 47, 59 (2002).

J. Enders e.a., Phys Rev C 67, 064302 (2003)

All available breakup cross sections on targets from C to Pb and energies 27-1000 MeV/u give consistent ANC values!

Summary of results:

LT ea, PRL 87, 2001

LT ea, PRC 67, 2004

3 different effective nucleon-nucleon interactions slightly different values & accuracy to about 10% :

⁷Be(p_{,γ})⁸B (solar neutrinos probl.): p-transfer: $S_{17}(0)=18.2\pm1.7$ eVb Breakup: $S_{17}(0)=18.7\pm1.9$ eVb Direct meas: $S_{17}(0)=20.8\pm1.4$ eVb

S₁₈: ${}^{9}C \rightarrow {}^{8}B+p$ breakup for ${}^{8}B(p,\gamma){}^{9}C$

Astrophysical S-factor

The reaction is important in the hot pp chains, in explosive H burning, at large temperatures, for creating alternative paths across the A=8 mass gap (see e.g. M. Wiescher et al., Ap. J. 343 (1989)352.)

pp IV ${}^{8}B(p,\gamma){}^{9}C(\beta^{+}\nu){}^{9}B(p){}^{8}Be(\alpha){}^{4}He$ and rap I ${}^{8}B(p,\gamma){}^{9}C(\alpha,p){}^{12}N(p,\gamma){}^{13}O(\beta^{+}\nu){}^{13}N(p,\gamma){}^{14}O.$

Use breakup of ${}^{9}C \rightarrow {}^{8}B+p$ at intermediate energies to obtain ${}^{8}B(p,\gamma){}^{9}C$ at astrophysical energies.

Eexisting data from:

B. Blank et al., Nucl Phys A624 (1997) 242
⁹C @285 MeV/u on C, Al, Sn and Pb targets Trache et al. ANC from breakup, 2002

Beaumel (ANC from (d,n) reaction)

Hisanaga, Motobayashi et al. (Coulomb dissociation)

CD and ANC results disagree ?

NIC-7

Exp. NP1412SAMURAI29

- Primary beam ¹⁸O @ 260 MeV/u
- Secundary beam ⁹C (160 MeV/u) → target → Si detector system → SAMURAI → detectors for p and HI

SAMURAI29 experiment

Detection systems at F13 focal plane: Silicon GLAST detectors

A.I. Stefanescu et al., Eur. Phys. J. A 58 (2022)

- System made up of 4 x position sensitive Si GLAST detectors
- placed between target and SAMURAI
- used for reaction products tracking (simultaneously)
- Active area: 87.552x87.552 mm²
- Number of strips: 128 / detector (4x128=512 strips)
- Substrate thickness: 325 μm
- Strip pitch: 684 μm
- 2 x MotherBoard with 16 slots/MB: 2x32x16=1024 ch
- High dynamic range: 100 KeV (protons) and ~8-900 MeV (fragments), possible due to the dual gain preamplifiers

SAMURAI29 experimental results

Nuclear ⁹C breakup on ¹²C target

theoretical calculation with MOMDIS for proton in 1p shell:

Experimental momentum distributions:

SAMURAI29 experimental results

Nuclear ⁹C breakup on ¹²C target

Process/	$S29^{*,**}$	Blank(1997)	Bazin(2009)	Enders(2003)	Schlemme(2019)
projectile	exp. RIKEN	exp. GSI $[119]$	exp. MSU [123]	exp. MSU $[124]$	exp. GSI $[125]$
$\sigma_{-1p}^{incl.}$	$50.3 \pm 1.7 \text{ (mb)}$	$48 \pm 8 \; (mb)$	$56 \pm 3 \; (mb)$	$54 \pm 4 \; (mb)$	$51.6 \pm 1.3 \; (mb)$
${}^{9}\mathrm{C}^{-1}$	160 AMeV on $^{12}\mathrm{C}$	285 AMeV on $^{12}\mathrm{C}$	97.9 AMeV on $^9\mathrm{Be}$	78.3 AMeV on $^{12}\mathrm{C}$	1670 MeV/u on $^9\mathrm{Be}$
$\sigma_{-1p}^{stripp.}$	$36.2 \pm 1.4 \; (mb)$	-	46 (mb)	$40 \pm 5 \text{ (mb)}$	-
⁹ C	160 AMeV on $^{12}\mathrm{C}$	285 AMeV on $^{12}\mathrm{C}$	97.9 AMeV on $^9\mathrm{Be}$	78.3 AMeV on $^{12}\mathrm{C}$	1670 MeV/u on $^9\mathrm{Be}$
$\sigma^{diff.}_{-1p}$	$13.1 \pm 2.5 \; (mb)$	-	$13.8 \pm 6 \;({\rm mb})$	$14 \pm 4 \text{ (mb)}$	-
⁹ C [*]	160 AMeV on $^{12}\mathrm{C}$	285 AMeV on $^{12}\mathrm{C}$	97.9 AMeV on $^9\mathrm{Be}$	78.3 AMeV on $^{12}\mathrm{C}$	1670 MeV/u on $^9\mathrm{Be}$

Table 6.3: Proton knockout reaction cross-sections from 9C

* need to be corrected with the experimental response function

** only the statistics errors are considered

For now, same result: $S_{18}(0) = 47$ eVb (preliminary, unpublished)

SAMURAI29 experimental results

Coulomb breakup on Pb target

Invariant mass technique to obtain the exc. energy distribution

$$\begin{split} M_{inv}^2 c^4 &= (E_p + E_{^8B})^2 - (\overrightarrow{P_p} + \overrightarrow{P_{^8B}})^2 \cdot c^2 \\ &= M_p^2 c^4 + M_{^8B}^2 c^4 + 2 \cdot \gamma_p \cdot M_p c^2 \cdot \gamma_{^8B} \cdot M_{^8B} c^2 \cdot (1 - \beta_p \beta_{^8B} \cdot \cos\Theta_{p^8B}) \\ &\to E^* = M_{inv} c^2 - M_{^8B} c^2 - M_p c^2 + S_p \end{split}$$

$E_{rel.}$ [MeV]	E^* [MeV]	$\Gamma \; [\text{keV}]$	J^{π}	Decay mode
0.918	2.218(11)	52(11)	$-\frac{1}{2}$	${}^9C \to p + {}^8B^{2^+}_{q.s}$
2.253	3.549(20)	673(50)	$-\frac{5}{2}$	${}^{9}C \to p + {}^{8}B^{2^{+}}_{q.s}$
3.104	4.40(4)	2750(110)	$(+\frac{1}{2},+\frac{5}{2})$	${}^9C \to p + {}^8B_{1^+}$
4.454	5.75(4)	601 (50)	-	${}^9C \rightarrow p + {}^8B_{3^+}$

Collaborators:

- IFIN-HH: A. Stefanescu, D. Tudor, I.C.Stefanescu, A.E.Spiridon, F. Carstoiu, LT
- RIKEN/CNS: V.Panin, T. Motobayashi, K. Yoneda, T. Uesaka, H. Otsu, H. Baba, S. Ota, T. Kobayashi, Y. Togano, L. Stuhl, Y. Kubota, M. Sasano, J. Zenihiro, D. Ahn, Y. Shimizu, N. Iwasa, H. Sato ...
- TAMU: A. Saastamoinen, C. Bertulani
- ATOMKI: Z. Halasz, Z. Elekes, G. Kiss
- WU: L. Sobotka, J. Elson
- LPC Caen: J. Gibelin

Acknowledgement: AS, ICS and DT were supported by RIKEN through IPA fellowships

Romanian Ministry of Research, under grants NUCASTRO, NAFRO, NAFRO2

DOE grants

Resonant Reaction Rates

* **Resonant** reaction is a two-step process.

$$\sigma_{\gamma} \propto \left| \left\langle E_f \left| H_{\gamma} \right| E_r \right\rangle \right|^2 \left| \left\langle E_r \left| H_f \right| A + p \right\rangle \right|^2$$

* The cross section (Breit-Wigner):

$$\sigma(E) = \frac{\lambda}{4\pi} \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\Gamma_p \Gamma_{\gamma}}{(E-E_r)^2 + (\frac{\Gamma}{2})^2}$$

* The contribution to the reaction rate:

PROJECTILE X E_{R} C - VALUE E_{R} E_{R} E_{R} E_{R} E_{R} E_{R} F_{R} F_{R} F

Spectroscopy of resonances

Locate and characterize resonances (by any means) => sufficient to evaluate the reaction rates

- Low energy resonances are the most important
- Energy of resonances are very important, and easier to determine
- "resonance strengths" ... less so
- Can do:
 - Transfer reactions
 - Trojan Horse Method measurements
 - Gamma-ray spectroscopy
 - Decay studies ... like beta-delayed proton-decay βp

Lower proton energies <500 keV, most important, but very difficult:

- lower branching
- increased exp difficulties (det windows, background, etc...)

Decay spectroscopy Beta- and beta-delayed proton-decay

Comparison Si – gas detector

FIG. 7: (Color online) Full collected statistics for the ^{23}Al data (black, solid) and the ^{22}Mg data (blue, dashed). The energy is the total measured decay energy. Smoothed ^{22}Mg spectrum, scaled to match the ^{23}Al spectrum at 150 keV is shown with red dots and corresponding uncertainties. Upper panel shows only the low energy part where the proton group at ~ 270 keV is clearly visible on top of the β background, whereas the lower panel shows the total spectra.

A. Saastamoinen, LT et al, PRC 83 (2011) E. Pollacco, LT et al., NIM 2014

AstroBox2 - the micromegas detector

Chamber: design and prod: TAMU Micromegas: Bucharest, Saclay, CERN Electronics: Bucharest Gas (P10) handling: existing at TAMU Assembly and source tests: Saclay + TAMU

The Detector – AstroBox2

Motivation for studying ²⁷P decay

• Astrophysical motivation: prod of ²⁶Al

27P 260 MS £: 100.07% £p: 0.07%	28P 270.3 MS ε: 100.00% εp: 1.3E-3%	29P 4.142 S ε: 100.00%	30P 2.498 Μ ε: 100.00%
26Si	27Si	28Si	29Si
2.2453 S	4 15 S	STABLE	STABLE
ε: 100.00%	ε: 10 .00%	92.713%	4.685%
25Al	26 Al	27 J	28Al
7.183 S	7.17E + 15 Y	SIABLE	2.245 M
ε: 101.00%	2: 101,10%	100%	β-: 100.00%
24 4g	25 /1g	267 Ig	27Mg
STA BLF	STA BLE	TA LE	9.458 M
78 99%	10.00%	11 1%	β-: 100.00%

We need a beam of ${}^{27}P...$

²⁸Si¹⁰⁺ primary beam @40 MeV/u from K500 Cyclotron + LN2 H target
²⁷P in a (p,2n) reaction at Cyclotron Inst, Texas A&M University

Experimental setup @TAMU

9/11/2024

L. Trache - OlvieG2024

Detectors with micromegas

MICROMegas anode used in experiment

AG

TAMU experiment

Ionut Stefanescu – thesis

Need energy, J_r and resonance strength

L. Trache - OMEG2024

$^{26m}Al(p,\gamma)$ resonances

E_p [keV]	E_level [keV]	Rel intens [%]	βp ratio [abs	ωγ [eV]
			valuesj	
150(8)	7842(8)	0.09	5.8(8) ×10-7	2.64 x 10 ⁻⁷
184(8)	7876(8)	0.29	1.78(14) ×10 ⁻⁶	6.34 x 10 ⁻⁶
213(8)	7905(8)	0.18	1.12(12) ×10 ⁻⁶	5.09 x 10 ⁻⁵
266(8)	7958(8)	1.23	8.30(32) ×10 ⁻⁶	9.12 x 10 ⁻⁴
392(8)	8084(8)	1.14	9.98(40) ×10 ⁻⁶	6.26 x 10 ⁻²
470(2)	8162(2)	7.94	4.66(8) ×10 ⁻⁵	0.25
619(2)	8311(2)	100	5.88(3) x10 ⁻⁴	0.57
738(2)	8430(2)	96.8	5.64(3) x10 ⁻⁴	0.63

Resonance strengths evaluation

• $\omega\gamma$ evaluation: thru (guided) assumptions

$$\omega\gamma = \frac{2J_r + 1}{(2J_{2^6Al} + 1)(2J_p + 1)} \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_{tot}},$$
$$\Gamma_p = 2\frac{\hbar^2}{mR^2} P C^2 S \theta_{pc}^2,$$

• With $J^{\pi}=1/2^+$; $1/\Gamma_{\gamma}=1$ fs, and spectroscopic factor assumed C²S=0.01 ; penetrability P calculated

The reaction rate for ${}^{26m}AI(p,\gamma) {}^{27}Si$ from ${}^{27}P \beta p$ -decay

IC Stefanescu, thesis March 2024 and IC Stefanescu et al., Phys. Rev. C 110, 015804 (2024)

L. Trache - OMEG2024

0<u>.</u>

L. Trache - OMEG2024

Time (0.1 ms)

"Other" method - ion-ion fusion mechanism at sub-Coulomb energies

Most sensitive method: activation + ultra-low background Starting point Current status

continuation

Motivation: important reaction in nuclear astrophysics:
 ¹²C+¹²C (Supernovae, massive stars evolution ...)
 very difficult to measure, fluctuating due to resonances!

• No resonances observed in ¹³C+¹²C! Obs: for most energies, the ¹²C+¹²C cross sections are suppressed!

• proposed tests of nucleus-nucleus models using ¹³C+¹²C, measured in the Gamow window Test react mech below barrier

• Collaboration with group of prof. X. Tang – IMP Lanzhou, China

Activation and measurements in environments with ultralow background: salt mine

Activation in nuclear laboratory (this is the 3 MV tandetron)

Measurement in salt mine Slanic Prahova (2.5 hrs from Bucharest - very low gammaray background)

"microBq" Lab

L. Trache - OMEG2024

Thick target method activation: 3 targets, 3.4 days; measurements: 3.9 days

L. Trache - OMEG2024

^{9/11/2024}

"Other" method – other cases

- Program to study light ion-ion fusion mechanisms at sub-barrier energies dr. Alexandra Spiridon in charge
- ¹²C+¹²C, ¹²C+¹⁶O, ¹⁶O+¹⁶O none produces activation!
- Try to use neighboring isotopes: ¹³C+¹⁶O, ¹⁹F+^{12,13}C ... most lead to short lived activities => no salt mine!
- Invent something else: clean spectra with coincidences in our lab
- Beta-gamma coincidences station BEGA: two HPGe detectors and a plastic scintillator
 - background reduction factor ~1000
 - down to $T_{1/2} \sim 2 \min$
- Future: fast changing target system

The ¹²C+¹⁶O Reaction

L. Trache - OMEG2024

BeGa station (WIP)

9/11/2024

Background reduction ~ 1000 (red spectrum)

Further problems - targets The ¹³C+¹⁶O Reaction – Preliminary results

CeO₂ targets

Alex Spiridon, PD grant (PN-III-P1-1.1-PD-2019-0234)

The ¹⁹F+^{12,13}C Reaction

*Collaboration with L. Guardo et al @ INFN-LNS, through ChETEC-INFRA

In beam irradiation of thick targets followed by deactivation measurements

45

¹⁹F +^{12,13}C – preliminary results

- No sign of hindrance, yet!
- Will proceed –
- next exp in Dec. 2024 with IMP& Catania

Acknowledgements

- Collaborators:
 - NAG in E
 - Florin (
 - Alexan
 - Alexan
 - Dana T
 - Ionut S
 - Iuliana
 - Madali
 - MARS gi
 - RIKEN co
 - AB2 coll (IFIN-HH)
- Acknowled
 - Grants f PN1642 NAFRO,
 - DOE Gra

Carpathian Summer School of Physics 2020 Sinaia, Aug. 18-27, 2021

Carpathian Summer School of Physics 2023 in images

There will be **CSSP25** after NIC June 22- July 3, 2025 Keep an eye on it, we will offer fellowships for students!

