

Explosive Nucleosynthesis in Corecollapse Type II Supernovae: Constraints from Presolar Grains

Nan Liu, Boston University Conel Alexander, Carnegie Institution Jianhua Wang, Carnegie Institution Bradley Meyer, Clemson University Larry Nittler, Arizona State University Lucas Walls, Clemson University Ananya Jain, Boston University Supernova

AGB Star

Protoplanetary Disk

Molecular Cloud

Presolar Grains

Asteroids and Comets

Meteorites and Interplanetary Dust Particles

by Larry Nittler, not to scale

Dust Formation After Supernova Explosion

- The elemental composition of a grain is determined by both the gas composition and condensation condition (P/T)
- The isotopic composition of a gran is determined by that of the ejecta from which the grain condensed

Presolar Grain Analysis in Laboratory

CHILI (Chicago Instrument for Laser Ionization)

Stephan et al. (2016) IJMS

six tunable lasers allow simultaneous detection of all isotopes of three elements

Microscope vs Telescope Isotope Analysis

from Liu et al. (2022) Universe

Titanium-44: Smoking Gun of Supernova Nucleosynthesis

⁴⁴Ti ($t_{1/2} = 60$ years): Inferred initial presence in many presolar grains (SiC, Si₃N₄, graphite), pointing to their Type II core-collapse supernova (CCSN) origin.

1D CCSN Nucleosynthesis Models

25 M_{\odot} Pre-SN model from Rauscher et al. (2002)

1D CCSN Nucleosynthesis Models

25 M_{\odot} Pre-SN model from Rauscher et al. (2002)

1D CCSN Nucleosynthesis Models

Mass Coordinate (M_{\odot})

Diverse Isotopic Signatures of CCSN Grains

Supernova Explosion and Supernova Dust

Grefenstette et al. (2016) ApJ

Supernova Explosion and Supernova Dust

Grefenstette et al. (2016) ApJ

Depending predominantly on explosive supernova nucleosynthesis and mixing

CCSN SiC Grains — Products of Large-scale Mixing

He/C and He/N Material

C, N-rich condensation for dust formation
 Neutron-burst isotopic signatures

Inner Si/S Material

 Correlated radiogenic ⁴⁹Ti and ²⁸Si enrichments (*Liu et al. 2018, Sci Adv; Liu et al. 2023 LPSC*) Fe/Ni Material

Correlated ²⁶Al and ²⁸Si enrichments (*Liu et al. 2024, ApJL*)

Correlated ⁴⁴Ti and ²⁸Si enrichments (*Lin et al. 2010, ApJ*)

3D hydrodynamic simulations of supernova explosions predict pile up of core material in the He shell due to shock deacceleration (*e.g., Wongwathanarat et al. 2017*)

How Could X Grains Form Such A Tight Correlation?

M_{\odot} Model Calculations for Si/S Zone

Mixing Si/S with Outer C-rich Materials

Quick Summary

Fe/Ni & Si/S – neutrinonucleus reactions, alpharich freeze outs

He/C zone – neutron burst

Presolar X SiC and Si₃N₄ grains sampled materials from Fe/Ni, Si/S, and He/C zones (and shells above)

Discussed in Liu et al. (2024) ApJL

Heavy-element Isotopic Compositions of X Grains

Neutron Bursts

- Powered by ${}^{22}Ne(\alpha, n){}^{25}Mg$
- Neutron density of 10¹⁷ n/cm³ at T ~ 10⁹ K (Meyer et al. 2000)
- Could occur in He/C zone during explosion (e.g., Liu et al. 2018)

S₃N₄ and X SiC – Isotopic Twins

Presolar Grain Database (Stephan et al. 2014, ApJS), Nittler et al. 1995, Lin et al. 2010, and this study

S₃N₄ and X SiC – Isotopic Twins

Type X SiC – Intrinsic Ti with extrinsic Ca

Si₃N₄ – Intrinsic Ca with little Ti

Presolar Grain Database (Stephan et al. 2014, ApJS), Nittler et al. 1995, Lin et al. 2010, and this study

Si₃N₄ and X grain data can be combined to reliably reduce ⁴⁶Ca/⁴⁰Ca and ⁴⁸Ca/⁴⁰Ca ratios

Calcium Isotopes

Ca – the most abundant element with the largest number of stable isotopes

Six stable isotopes are produced by distinct nucleosynthesis processes

Short-lived isotope ⁴¹Ca

Ca/Ti _{solar} = 25				Ti46	Ti47	Ti48	Ti49	<mark>Ti50</mark>
				8.0%	7.3%	73.8%	5.5%	5.4%
				<mark>Sc45</mark> 100%				
<mark>Ca40</mark>	<mark>Ca41</mark>	Ca42	Ca43	Ca44	<mark>Ca45</mark>	Ca46	<mark>Ca47</mark>	Ca48
96.9%	1×10⁵ a	0.6%	0.1%	2.1%	162 d	0.004%	4.5 d	0.2%
<mark>K39</mark>	<mark>K40</mark>	<mark>K41</mark>	 Ca is dominated by ⁴⁰Ca Isobaric interferences at masses 46 and 48 					
93.3%	0.01%	6.7%						

Si₃N₄ Calcium Isotopic Patterns

Si₃N₄ grains show the largest enrichments in ⁴⁶Ca

• Neutron-burst signature, powered by $^{22}Ne(\alpha, n)^{25}Mg$ that provides ~10¹⁷ neutrons/cm³

Neutron-burst in the He/C Zone

Grain data overall agree with predicted H/C zone's compositions at (1.00-1.75) x 10⁵¹ erg
 Small discrepancies may reflect nuclear uncertainties, GCE effects, etc.

Contribution of Fe/Ni Material

Contribution of Fe/Ni Material

• Mixing with core material leads to greater reductions in $\delta^{49,50}$ Ti than in δ^{46} Ca

• He/C to core mixing ratio $\simeq 97:3$, but more Si₃N₄ data are needed to improve the statistics

Conclusions and Outlook

- Presolar grains from CCSN include SiC, Si₃N₄, and graphite with diverse isotopic compositions, recording the signatures of a variety of nucleosynthesis processes occurring in their parent CCSNe
- Their heavy-element isotopic signatures are controlled by neutrobursts in the He/C zone and light-element isotopic signatures by both the neutron bursts and alpha-rich freezeouts in deep interior, thus enabling constraining the relative mixing ratios across CCSNe
- Nuclear uncertainties are needed to be investigated to assess uncertainties in our derived constraints

Extra Slides

Could Local, Small-scale Mixing Work?

