

Uncovering the Origin of Galactic Ancient

Accretion Relics

Renjing Xie (谢仁婧) National Astronomical Observatories, CAS 11/09/2024 @ Chengdu, OMEG

Collaborators: H.-N. Li, R.-Z. Zhang, T. Matsuno, W. Aoki, Z. Yuan, X.-X. Xue, G. Zhao,

Tracing the Galactic early assembly history

Hierarchical merging

The Milky Way Stellar h

Overdensity in coordinate space

dynamical information – progenitor system

dynamical information —— distinguish origin of stars

Chemodynamical analysis of accretion relics

distinguish origin of stars

progenitor system

Mass?

Nucleosynthesis events?

Accretion history?

Chemodynamical analysis of accretion relics

progenitor system

Mass? — MDF (metallicity distribution function)

Nucleosynthesis events? - CCSN, Type Ia, NSM, AGB

Accretion history? – ages

explore properties of progenitor system

Chemodynamical analysis of accretion relics

Mass? — Fe abundance

Nucleosynthesis events? — Mg, Fe, Eu, Ba abundance

Accretion history? — Th abundance

Chemical abundance provide the key information to uncover the accretion history of the Milky way

Chemical evolution

contribution

Chemical abundance provide the key information to uncover the accretion history of the Milky way

pattern that r-process nucleosynthesis produces

Dwarf galaxy: simple chemical evolution history

dwarf galaxies (distant and faint)

[Eu/Fe] = 1.68

Advantage of Substructure

- > Member stars are nearby
 - obtain the high-resolution spectral
 - measure the elemental abundance to get full pattern
- Correspond to accreted dwarf galaxies
 - born in dwarf galaxy that were disrupted and accreted by the MW

Main sequence turn-off (MSTO) star

Previous studies: Giants as tracers

Advantage of MSTO:

Represent stage before the first dredge-up

> Bright enough to obtain their high-resolution spectra

Systematic chemodynamical analysis for MSTO stars

Sample: MSTO stars with elemental abundance from SAGA and CFHT observations

GSE: chemical properties--alpha elements

Alpha-knee at [Fe/H] ~ -1.5:

- > onset of Type Ia supernovae
- > consistent with previous work
- Iess massive than the MW

GSE: chemical properties--heavy elements

Similar to insitu component

> evidence of time-delay source in GSE lack of very metal-poor star

GSE: r-process pattern

Pilot project with CFHT: follow-up studies of an r-process enhanced star

J0722: T_{eff} = 6133 K, logg = 3.69, [Fe/H] = -1.8, Eu/Fe = 0.88

General agreement with solar r-process except for praseodymium

Summary

> Systematic chemodynamical analysis for MSTO stars

- ➢ GSE alpha knee:
 - \checkmark alpha knee in [Fe/H] ~ -1.5
 - \checkmark less massive than the MW

- ➤ GSE heavy element:
 - ✓ Large scatter, similar to galactic field stars
 - ✓ Provides valuable comparison of the r-process pattern ex/in-situ