

National Astronomical Observatories, CAS

Co-authors: T. Matsuno, H.-N. Li, W. Aoki, X.-X. Xue,

T. Suda, G. Zhao, Y.-Q. Chen, M. N. Ishigaki,

J.-R. Shi, Q.-F. Xing, J.-K. Zhao

11/09/24 @Chengdu, OMEG XVII

The structure of our Milky Way

- Bar/Bulge
- Disk: thin disk, thick disk
- Halo: substructures from merger events

Credit: NAOJ/H. Fujiwara

Credit: ESA/Gaia/DPAC; CC BY-SA 3.0 IGO

Credit: V. Belokurov and the SDSS

The Milky Way formed hierarchically

c.f. Haining LI's and Renjing XIE's talk

The nucleosynthesis and chemical abundances

Nuclear Astrophysicists

Astronomical researchers

$$[\mathbf{X}/\mathbf{Y}] = \log(N_{\mathbf{X}}/N_{\mathbf{Y}}) - \log(N_{\mathbf{X}}/N_{\mathbf{Y}})_{\odot}$$

c.f. Prof. Nozomu TOMINAGA's talk

The assembly history of the Milky Way remains unclear

Relatively recent and massive merger events

Gaia-Enceladus [Helmi+ 2018, Belokurov+ 2018]

3 Gyr 0.5 Gyr

2019]

Magellanic clouds

Early or minor merger

[Myeong+ 2019]

events Kraken [Kruijssen+ 2019]

Koala

[Forbes 2020]

10 Gyr

Credit: E. Vasiliev

Arjuna [Naidu+ 2020] [Naidu+ 2020]

Nordlander 2017

- Very metal-poor (VMP) star: [Fe/H]<-2 local equivalents of high redshift
 - Earlier properties of substructure progenitor
 - Search for accreted ultra-faint dwarf galaxies
 - Unraveling early nucleosynthesis and the origin of r-process elements

c.f. Prof. Toshitaka KAJINO's talk (He+2024, ApJL) Shilun JIN's talk, Hiroko OKADA's poster, etc.

First systematic chemodynamical analysis for VMP stars

Precise kinematics
5778 VMP stars

352 stars

Detailed abundances of ~20 elements

Clustering algorithm

- Substructure association
 - > GSE, Thamnos, Sequoia, Helmi streams, Wukong/LMS-1, Pontus
- Newly define a very metal-poor disk (VMPD)

Gaia-Sausage-Enceladus (GSE)

• 89 member stars

- Large scatter
 - Complex chemical evolution history of GSE progenitor
- R-process-enhanced subgroup
 - Dynamical clustered subgroup
 - > Small scatter in most elements
 - > Extremely r-process enhanced

Gaia-Sausage-Enceladus (GSE)

- R-process-enhanced subgroup
 - > Dynamical clustered subgroup
 - > Small scatter in most elements
 - > Extremely r-process enhanced

GSE: extremely r-process enhanced subgroup

- The first discovery of an extremely r-process enhanced subgroup in the accreted systems
 - Follow-up of 7 subgroup members:
 6 r-process-enhanced stars ([Eu/Fe]>0.3)
 3 potential r-II stars ([Eu/Fe]>0.7)
- Valuable opportunity to study the r-process in dwarf galaxies

- ☐ Enriched by an independent nucleosynthesis event in the GSE?
- ☐ The remnants of accreted/satellite galaxy that have been accreted with GSE?

- Canonical disk
 - > [Fe/H]>-1

- Small scatter
 - > Common origin
- Low Zn abundance
 - > VMPD: 0.16
 - All sample: 0.25

VMPD: low-mass building-block of proto-galaxy

- Production site of Zn: Hypernovae (HNe)
- HNe: explosion of massive star

Summary

- > First systematic chemodynamical analysis for very metal-poor stars
- > GSE:
 - ✓ Large scatter, similar to galactic field stars
 - ✓ An r-process-enhanced subgroup in GSE
 - √ Valuable opportunity to study the r-process ex-situ
- > VMPD:
 - ✓ Small scatter: common origin
 - ✓ Deficiency in Zn: low-mass progenitor systems?
 - ✓ Low-mass building-blocks of proto-galaxy

My orcid