

Experimental studies of key resonances for explosive hydrogen and helium burning

Chris Wrede

Michigan State University and Facility for Rare Isotope Beams

OMEG2024, Chengdu, China

September 11th, 2024

We gratefully acknowledge support from the U.S. Department of Energy under award numbers DE-SC0016052 and DE-SC0023529, and the U.S. National Science Foundation under award numbers PHY-1565546, PHY-1913354, and PHY-2209429

Outline

Thermonuclear charged particle reaction rates in novae and X-ray bursts

Branching ratios for novae with the GADGET I system

Experiment 17023 at NSCL: ²²Na(p, γ)²³Mg reaction using ²³Al β ⁺ decay

Experiment 17024 at NSCL: ³⁰P(p, γ)³¹S reaction using ³¹Cl β ⁺ decay

Lifetimes for novae with the Doppler Shift Lifetimes 1 and 2 systems

Experiment S2193 at TRIUMF: ²²Na(p, γ)²³Mg reaction using ²⁴Mg(³He, α)²³Mg reaction

Experiment S2373 at TRIUMF: ³⁰P(p, γ)³¹S reaction using ³²S(³He, α)³¹S reaction

Branching ratios for X-ray bursts with the GADGET II systems

Experiment 21072 at FRIB: ¹⁵O(α,γ)¹⁹Ne reaction using ²⁰Mg β ⁺p decay

Experiment 23035 at FRIB: ⁵⁹Cu(p, γ)⁶⁰Zn and ⁵⁹Cu(p, α)⁵⁶Ni reactions using ⁶⁰Ga β ⁺ decay

Lifetimes and branching ratios for X-ray bursts with a new PXCT system (to be named)

Experiment to be proposed at FRIB: ⁵⁹Cu(p, γ)⁶⁰Zn and ⁵⁹Cu(p, α)⁵⁶Ni reactions using ⁶⁰Ga β ⁺ decay

Classical novae

S. Starrfield *et al.*, (1971, 1972) J. Jose et al., Nucl. Phys A777, 550 (2006)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

abcNEWS

Nova explosion 3,000 light-years away will be seen from Earth with the naked eye

LEAH SARNOFF

July 31, 2024 · 4 min read

The last recorded outburst from T Coronae Borealis — which includes a hot. red giant star and a cool, white dwarf star — was in 1946, according to the space agency, which forecasts it will do so again before September 2024.

https://ca.news.yahoo.com/earthsoon-naked-eye-view-222113219.html

Nucleosynthesis in novae & nuclear uncertainties

Handful of impactful reaction rate uncertainties remaining, including:

- Rate of ²²Na(p,γ)²³Mg affects modeling of ²²Na production in novae of interest to γ-ray line astronomy and Ne isotopic ratios in pre-solar nova grains
- Rate of ³⁰P(p,γ)³¹S aftects modeling of nucleosynthesis in the Si-Ca region: Si isotopic ratios in pre-solar nova grains; nova thermometers; nova mixing meters

J. Jose, Proceedings of Science, NIC XI 050 (2011)

X-ray burst

RXTE; Galloway et al., Astrophys. J. 179, 360 (2008)

Nucleosynthesis path in X-ray bursts

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA FRIB frib.msu.edu

Which reactions impact the X-ray burst light curve?

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

Rank	Reaction
1	¹⁵ O(α, γ) ¹⁹ Ne
2	$^{56}Ni(\alpha, p)^{59}Cu$
3	${}^{59}Cu(p, \gamma){}^{60}Zn$
4	${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$
5	$^{22}Mg(\alpha, p)^{25}Al$
6	$^{14}O(\alpha, p)^{17}F$
7	$^{23}Al(p, \gamma)^{24}Si$
8	$^{18}\text{Ne}(\alpha, p)^{21}\text{Na}$
9	63 Ga(p, γ) 64 Ge
10	${}^{19}\text{F}(p, \alpha){}^{16}\text{O}$
11	$^{12}C(\alpha, \gamma)^{16}O$
12	$^{26}Si(\alpha, p)^{29}P$
13	${}^{17}F(\alpha, p){}^{20}Ne$
14	$^{24}Mg(\alpha, \gamma)^{28}Si$
15	${}^{57}Cu(p, \gamma){}^{58}Zn$
16	60 Zn(α , p) 63 Ga
17	${}^{17}F(p, \gamma){}^{18}Ne$
18	40 Sc(p, γ) ⁴¹ Ti
19	$^{48}Cr(p, \gamma)^{49}Mn$

Our experimental program focuses on the top three:

- 1. ${}^{15}O(\alpha,\gamma){}^{19}Ne$
- 2. ⁵⁹Cu(p,α)⁵⁶Ni
- 3. ⁵⁹Cu(p,γ)⁶⁰Zn

The same reactions also affect the ash composition

R. Cyburt et al., Astrophys. J. 830, 55 (2016)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University

640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Thermonuclear resonant charged particle reaction rates

Thermonuclear reaction rate for narrow, isolated (p,γ) resonance:

$$N_A \langle \sigma v \rangle \sim \omega \gamma e^{-E_r/kT}$$

Resonance strength:

$$\omega \gamma = \frac{(2J_{res} + 1)}{(2J_{reac} + 1)(2J_p + 1)} \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma}$$

If
$$\Gamma_{\gamma} \gg \Gamma_p$$
, then $\omega \gamma \sim \frac{\Gamma_p}{\Gamma} \cdot \Gamma$

Need branching ratios and lifetimes

RIB production at NSCL and delivery to Gaseous Detector with Germanium Tagging (GADGET)

M

GADGET Main components:

- 1. Beam-energy degrader
- 2. Custom-designed and built gaseous "Proton Detector"
- 3. Existing Segmented Germanium Array (SeGA)

M. Friedman et al. NIM A 940, 93 (2019)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

²³Al(βp)²²Na GADGET spectrum and results

• GADGET value for 204-keV resonance is $I_{\rm p}$ = (2.57 ± 0.17) x 10⁻⁴

→ First scientific measurement with GADGET

• GADGET value for 204-keV resonance is Γ_p/Γ = (6.5 ± 0.8) x 10⁻³

 \rightarrow Factor of 5 lower than most recent literature value

• Astrophysical impact

 \rightarrow Inconsistencies between various direct and indirect measurements *increase* the uncertainty

→ Variation in predicted ²²Na yield increases to a factor of 3.8 corresponding to a factor of 2 in detectability distance

M. Friedman et al., Phys. Rev. C 101, 052802(R) (2020)

³¹Cl(βp)³⁰P GADGET spectrum and results

- GADGET value for 260-keV resonance is $I_{\rm p} = (8.3 \pm 1.0) \times 10^{-6}$
- → Lowest β-p intensity ever measured below 400 keV
- GADGET value for 260-keV resonance is $\Gamma_{\rm p}/\,\Gamma$ = (2.9 \pm 0.6) x 10^{-4}
- \rightarrow First measurement of tiny branching ratio for key resonance
- Astrophysical impact

→ Calibrates nuclear thermometers for novae using elemental abundance ratios in ejecta

 \rightarrow Identification of presolar nova grains in primitive meteorites by silicon isotopic ratios

T. Budner *et al.*, Phys. Rev. Lett. 128, 182701 (2022) T. Budner, Ph.D. thesis (MSU, 2022)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Upgrade: DSL2 @ TRIUMF ISAC-II

 α detection efficiency ×11 γ detection efficiency ×1.3

- 1st run of TRIUMF S2193 in 2022 to measure lifetime of key ²³Mg resonance demonstrated successful DSL2 operation; 2nd run soon
- TRIUMF S2373 approved to measure key ³¹S resonance using DSL2; hoping for scheduling in 2025

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

β decay of ²⁰Mg to probe key ¹⁵O(α ,γ)¹⁹Ne resonance

frib.msu.edu

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA

Gaseous Detector with Germanium Tagging II (GADGET II)

- Compact time projection chamber (TPC) surrounded by HPGe array (SeGA, DeGAi, PXCT, ...)
- TPC can measure β⁺ delayed charged particle tracks to identify particles and measure multi-particle emissions
- Operates at Facility for Rare Isotope Beams (FRIB)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Facility for Rare Isotope Beams (FRIB) A User Facility at Michigan State University

- Funded by U.S. Department of Energy with contributions and cost share from Michigan State University
- Serving over 1,400 users
- Key feature is 400 kW beam power for all ions (e.g. 5x10^{13 238}U/s)
- Separation of isotopes in-flight provides
 - Rapid development time for of any isotope
 - All elements and short half-half lives
 - Fast, stopped, and reaccelerated beams

Example ²⁰Mg(β⁺pα)¹⁵O Candidate Event of Interest (FRIB E21072, ran Nov. 2022)

- Analysis is ongoing; search for candidates aided by machine learning
- Statistics 17 times lower than proposed to FRIB PAC1; impure beam with ${}^{21}Mg(\beta + p\alpha)$ background
- Current effort is to quantify energy balance between p and α

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu T. Wheeler, R. Mahajan *et al.* T. Wheeler, PhD thesis (MSU, 2024)

Addressing ⁵⁹Cu(p,γ)⁶⁰Zn and ⁵⁹Cu(p,α)⁵⁶Ni reactions with GADGET II: FRIB Experiment 23035

- β^+ decay of ⁶⁰Ga to ⁶⁰Zn
- Goals: discover resonances in the competing ⁵⁹Cu(p,γ)⁶⁰Zn and ⁵⁹Cu(p,α)⁵⁶Ni reactions and determine their properties (*E*, and *p*, α, γ branches) for X-ray bursts
- Identical setup to E21072
- Approved by FRIB PAC2; likely to run in 2025

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Outlook for ⁵⁹Cu+p reactions: Particle X-ray Coincidence Technique (PXCT)

• PXCT was introduced in 1976 and is the only experimental technique available to measure nuclear excited state lifetimes in the 0.01-1.0 fs range

Revival and extension of PXCT method at FRIB

- Revival: design and build PXCT setup at FRIB
- Extension: Measure lifetimes of *isolated* resonances using PXCT
- **Extension**: Measure $p/\alpha/\gamma$ branching ratios simultaneously
- Extension: Use information to calculate resonance strengths for nuclear astrophysics
- Flagship science case to be proposed to FRIB PAC: ⁶⁰Ga EC(β^+) \rightarrow ⁶⁰Zn \rightarrow ⁵⁹Cu + p (or ⁵⁶Ni + α)

Figures: L. Sun

L. Sun, J. Dopfer et al., to be submitted

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

PXCT system thoroughly tested with sources

C. Wrede, OMEG, Sep. 2024, Slide 21

Summary and Outlook

- NSCL E17023 and E17024 with GADGET I: determined small proton branching ratio of key ²²Na(p,γ)²³Mg and ³⁰P(p,γ)³¹S resonances using ²³Al and ³¹Cl beta decay for novae [M. Friedman *et al.*, Phys. Rev. C 101, 052802(R) (2020); T. Budner *et al.*, PRL 128, 182701 (2022); T. Budner PhD thesis (MSU, 2022)]
- TRIUMF Experiments S2193 and S2373 with DSL2: Doppler Shift Attenuation Method to measure lifetimes of key ²²Na(p,γ)²³Mg and ³⁰P(p,γ)³¹S resonances
 [L. Sun *et al.*, Phys. Lett. B 839, 137801 (2023); C. Fry PhD thesis (MSU, 2018); L. Weghorn PhD in progress (MSU)]
- FRIB E21072 with GADGET II: β decay of ²⁰Mg to measure alpha branching ratio of key ¹⁵O(α,γ)¹⁹Ne resonance for X-ray bursts [Ran successfully in November 2022; data analysis approaching completion; T. Wheeler PhD thesis (MSU, 2024)]
- FRIB E23035 with GADGET II: β decay of ⁶⁰Ga to discover resonances in the competing ⁵⁹Cu(p,γ)⁶⁰Zn and ⁵⁹Cu(p,α)⁵⁶Ni reactions and determine their properties (*E*, and *p*, α, γ branches) for X-ray bursts [PAC2 approved and to be scheduled for 2025; A. Adams PhD in progress (MSU)]
- Development of PXCT system at FRIB: Lifetimes and branching ratios using electron capture and beta decay in one experiment: ⁶⁰Ga decay for ⁵⁹Cu(p,γ)⁶⁰Zn and ⁵⁹Cu(p,α)⁵⁶Ni reactions [System built and tested; technical manuscript L. Sun, J. Dopfer *et al.*, to be submitted]

Thank you for your attention!

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu