

Construction of active target TPC at CENS

Soomi Cha (車修美)

Center for Exotic Nuclear Studies, Institute for Basic Science on behalf of AToM-X collaboration

2024-09-10

OMEG2024 @ Chengdu

Background Image: Courtesy of Terry Robison

Importance of (α, p) reactions for astrophysics

- (α, p) reaction rates play an important role in understanding: ٠
 - ✓ Light curve of the X-ray burst
 - ✓ Nucleosynthesis in the core-collapse supernovae

3

AToM-X

- Active target TPC
 - ✓ Detection gas plays as a reaction target
 - \checkmark 3D tracking of charged particles \rightarrow reaction vertex measurement!
- Challenges for the direct (*α*,*p*) measurements
 - ✓ High detection efficiency
 - ✓ High beam rate endurable (~10⁵ pps)
 - $\checkmark\,$ Good enough position and energy resolution

AToM-X : Active target TPC for Multiple nuclear eXperiment

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ Field cage
 - (Track measurement)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ Field cage
 - (Track measurement)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

AToM-X : Active target TPC for Multiple nuclear eXperiment

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)
- Dimensions :
 - ✓ Chamber : 504(X) x 417(Y) x 504(Z) mm³
 - \checkmark Wings for signal (ZAP) feed through : 236(X) x 270(Y) x 390(Z) mm³
 - ✓ Assembly type→portable!

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)
- Dimensions :
 - ✓ Chamber : 504(X) x 417(Y) x 504(Z) mm³
 - \checkmark Wings for signal (ZAP) feed through : 236(X) x 270(Y) x 390(Z) mm³
 - ✓ Assembly type→portable!

- Providing uniform electric field in the active volume
- PCB boards + Polycarbonate frame
- cathode + anode + side planes
- Type-1 : Au-plated tungsten wires on PCB → Transparent !
 ex) ³⁴Ar(α,p)³⁷K, ¹⁸Ne(α,p)²¹Na, ¹⁷F(α,p)²⁰Ne, ...

A part of side planes

-260V

-1.6kV

OMEG2024 @ Chengdu

- Tracking charged particles with readout pixels (beam, recoils, ...)
- Micromegas as a chamber flange
- Drift electrons from the ionization are amplified b/w mesh & readout.
- pixel size : 4 x 4 mm²
 - ✓ Type-1 : Resistive
 - ✓ **Type-2 : Resistive + Capacitive sharing** (for better position resolution)

17

Test status

- ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
- $\checkmark\,$ Checked analog signals on the mesh using a $^{241}\text{Am}\,\alpha$ source and a cathode plate
- \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
- ✓ Now trying to obtain the track using our newly-made field cage!

- Test status
 - ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
 - \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
 - \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
 - ✓ Now trying to obtain the track using our newly-made field cage!

Silicon & CsI detector walls

- Measuring energy and position of charged particles or *γ*-rays
 - Silicon detectors
 - ✓ X6 model using the resistive technique (1000-µm-thick) (Micron Semiconductor Co.)
 - ✓ 8 Junction strips (resistive), 4 Ohmic strips (normal)
 - \checkmark Position : (Q_H-Q_L) / (Q_H+Q_L), ~ 1mm (FWHM)
 - ✓ Energy : $Q_H + Q_L$, ~50 keV (FWHM) using 4-peak α emitting source

X. Pereira-Lopez *et al.*, NIMB (2023) D. Kim *et al.*, NIMB (2022)

Silicon & CsI detector walls

- Measuring energy and position of charged particles or γ -rays
 - CsI(TI) + SiPM detectors S. Bae et al., NIMB (2023)
 - ✓ short rise time (~0.5µs)
 - $\checkmark\,$ large signal height $\rightarrow\,$ no preamp for GET
 - $\checkmark\,$ off-line test results :
 - ¹³⁷Cs γ-ray source ~ 12% (FWHM)
 - ²⁴¹Am α -source after thin air ~ 6% (FWHM)

- Analysis software package : LILAK (Low and Intermediate energy nucLear experiment Analysis toolKit)
 - ✓ task-based analysis toolkit
 - ✓ contains general classes for MC simulation, reconstruction (pulse shape analysis, Hough transform, RANSAC, ...), and so on.
- Garfield++ simulation for electric field (2D & 3D), electron drift, ...
- GEANT4 & NP tool simulation for kinematics, geometry, detection efficiency, ...

2024-09-10

Physics plans

ibs CENS

- Direct measurement of astrophysically important reactions
 - ✓ ³⁴Ar(α ,p)³⁷K at CRIB in RIKEN A. Kim *et al.*, (RIBF NP-PAC-24, accepted)
 - ✓ ¹⁸Ne(α ,p)²¹Na, ¹⁷F(α ,p)²⁰Ne, ...
- Elastic/Inelastic scattering
 - $\sqrt{12}C(p,p)3\alpha$ reaction for triple- α process

J.W-Lee et al., (JAEA PAC2024, accepted)

Direct measurement of nuclear fusion reaction of exotic nuclei

 ^{6,8}He + ⁴⁰Ar fusion, ...

Physics plans

Direct measurement of astrophysically important reactions

✓ ³⁴Ar(α ,*p*)³⁷K at CRIB in RIKEN A. Kim *et al.*, (RIBF NP-PAC-24, accepted)

- ✓ ¹⁸Ne(*α*,*p*)²¹Na, ¹⁷F(*α*,*p*)²⁰Ne, ...
- Elastic/Inelastic scattering

 \checkmark ¹²C(*p*,*p*)3 α reaction for triple- α process

J.W- Lee et al., (JAEA PAC2024, accepted)

Direct measurement of nuclear fusion reaction of exotic nuclei

 ^{6,8}He + ⁴⁰Ar fusion, …

JAEA Tandem facility

List of collaborators

Welcome to join our collaboration !

CENS, IBS

Korea Univ.

The Univ. of Tokyo

Texas A&M Univ.

CEA, Saclay

Ewha womans Univ. Sungkyunkwan Univ.

> Background Image: Courtesy of Paul Montague "Neighbors" Astronomy photographer of the year 2023

JAEA

2024-09-10

OMEG2024 @ Chengdu

We would like to meet you here again!

https://inpc2025.org

The 29th International Nuclear Physics Conference

May 25-30, 2025 Daejeon, Korea

2024-09-10

OMEG2024 @ Chengdu

- Active Target Time Projection Chamber (AT-TPC) allows a precise measurement of nuclear reactions
 using rare isotope beams at the present and future nuclear physics facilities.
- Active Target TPC for Multiple nuclear physics eXperiments (AToM-X) is under development.
- AToM-X consists of a highly segmented Time Projection Chamber (TPC) using a Micromegas, a field cage, and solid state detectors.
- AToM-X enables the high resolution measurement of the 3-dimensional particle tracks, energy, and position with the high detection efficiency.
- Softwares for AToM-X including analysis toolkit (lilak) and simulations are under the development.
- In-house test is processing, and interesting experiments will be performed next year !

- Test status
 - ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
 - \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
 - \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
 - ✓ Now trying to obtain the track using our newly-made field cage!

Backup

Micromegas (back : stiffener)

HV connection

- Providing uniform electric field in the active volume
- PCB boards + Polycarbonate frame
- cathode + anode + side planes
- Type-1 : Au-plated tungsten wires on PCB → Transparent !
 ex) ³⁴Ar(α,p)³⁷K, ¹⁸Ne(α,p)²¹Na, ¹⁷F(α,p)²⁰Ne, ...

Test status

- ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
- \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
- \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
- ✓ Now trying to obtain the track using our newly-made field cage!

Major changes?

Micromegas

- Octagonal shape → reduced the dead-layer effect of silicon detectors
- Double layer of aux. detectors \rightarrow better angular coverage
- Extended FC \rightarrow longer track can be measured.
- External Micromegas as a chamber flange w/ new technique

- Tracking charged particles (beam, recoils, ...)
- Drift electrons from the ionization are amplified b/w GEM & mesh & readout pad.
 - ✓ **Type-1 : Resistive** (for AsAd board protection)
 - ✓ **Type-2 : Resistive + Capacitive sharing** (for better position resolution)
- No ZAP board required (No bias on the readout pad)
- Micromegas as a chamber flange

Beam

Micromegas

Resistive Micromegas for AToM-X

- **Tracking charged particles** (beam, recoils, ...) ۲
- Drift electrons from the ionization are amplified b/w GEM & mesh & readout pad. ٠
 - ✓ **Type-1 : Resistive** (for AsAd board protection)
 - ✓ **Type-2 : Resistive + Capacitive sharing** (for better position resolution)
- **GEM** foils for proper gains

Micromegas Beam

- ✓ Three different GEM foils
 - Thick GEM (1000µm)
 - Thin GEM (256µm)
 - Thin GEM (256µm, different holes) HG : 140/70/50 LG: 160/110/90
- \checkmark Proper gains for each section by adjusting HVs (low gain for beam and heavy recoils / high gain for light ptcls)
- ✓ HV connections from Micromegas
- ✓ Gain calibration required

Chamber and Data acquisition system

- Assembly type chamber (1/2"-thick aluminum)
- General Electronics for TPCs (GET) system based on ASIC E.C. Pollaco *et al.*, NIMA (2018) ✓ handling large number of channels w/ high data transfer rate
 - ✓ 5650 electronic channels in total (4600 from Micromegas & 1050 from aux. detectors)
- Signal merging PCB & ZAP board (bias and signal processing) for aux. detectors

