

Non destructive lifetime measurement of isomeric states in heavy ion storage rings

Sale C

Shahab Sanjari GSI Darmstadt

17th International Symposium on Origin of Matter

and Evolution of Galaxies (OMEG 2024)

Chengdu 2024-SEP-10

GSI and FAIR

Located in Darmstadt (Germany)

NESR

Storage ring mass and lifetime spectrometry

- Storage Ring Standard Mode (SMS):
 - Using Schottky detectors and E-Cooler
 - Simultaneous lifetime measurement possible
 - Time scales ~ order of s
- Storage Ring Isochronous Mode (IMS):
 - Using ToF detectors
 - MS of very short lived nuclei (~ us)
 - No lifetime measurement possible
- Combined Schottky+Isochronous Mass and Lifetime Spectrometry (<u>S+IMS)</u>
 - Simultaneous lifetime measurement possible
 - new method developed in ESR since 2021

Image: GSI Darmstadt

 $-rac{1}{\gamma_t^2}rac{\Delta(m/q)}{(m/q)}$

Schottky detectors @ GSI

SMS mass measurement example

Bosch F., Litvinov Yu. A. Int. J. Mass Spec. V349-350, (2013)

SMS mass measurement example

SMS lifetime measurement example

approx. same m/q ratio

$$^{142}_{61} \text{Pm}^{60+} \longrightarrow ~^{142}_{60} \text{Nd}^{60+} + \nu_e$$

Kienle, Bosch et. al., Phys. Lett. B 726 (2013) 4–5, p.638

Electromagnetic nuclear de-excitations

Two photon decays

- First order process is inhibited due to $0^+ \rightarrow 0^+$, second order process $\rightarrow 2$ gamma decay
 - Nuclear theory information (shape coexistence, neutron skin depth, etc...)
- Up to now measured using gamma spectroscopy: ¹⁶O, ⁴⁰Ca, ⁹⁰Zr
- Estimation for ^{72m}Ge partial decay half-life

New combined Schottky + IMS (S+IMS) method

- Halflife measurement of ^{72m}Ge (2021)
- Spokesperson: W. Korten @ CEA and Yu. A. Litvinov @ GSI
 - D. Freire-Fernández, R. Chen,
 S. Litvinov, H. Weick, S. Sanjari and the E0143 collaboration
- T_{1/2}^{rest}=23.9(6) ms, 692.8(19) keV
- 10 times shorter than prediction

D. Freire-Fernández, et. al. PRL 133, 022502 (2024)

- Low lying isomer ^{72m}Br (Spring 2021)
 - Unprecedented mass resolution of 9.1 x 10^5
 - ~100keV

D. Freire-Fernández, PhD Thesis, Uni Heidelberg (2024)

New measurement of ^{98m}Mo and ^{98m}Zr

- Pushing limits down to ~ 3 ms!
- First part of G22-00018
 Experiment (May 2024)

Preliminary!

Plans for further increase of accuracy

- The isochronous condition is only valid in a very narrow range
 - Causing peak broadening \rightarrow Increase of $\Delta f/f \rightarrow$ Decrease of mass resolving power \rightarrow Increase of error bar

5D analysis

- Up to now: **Power**, **Frequency** and **Time**
- Towards <u>5 dimensional</u> analysis:
 - Phase: Signal phase between several detectors
 - **Position** (a.k.a. Rho, Brho or velocity)
- Correct for the mass formula
 - Fitting 2nd order pol: good for ID but not for mass measurements
 - Due to reduced resolution!

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta(m/q)}{(m/q)} + \left(1 - \frac{\gamma^2}{\gamma_t^2}\right) \frac{\Delta v}{v}$$

Phase measurement

- Correlating signals from different detectors, including the phase information
 - Similar techniques in ion-traps and communications eng.
- Currently work in progress
 - Also many thanks Dr. Qian Wang (IMP Lanzhou, currently guest scientist at GSI)

Possible Schottky detector locations in future Collector Ring (CR) @ FAIR

Idea using cavity doublet

- Position determination
 - Comparison with circular reference
 - Same Depth (TTF)
 - Same f₀

S. Sanjari et. al. Phys. Scr. 014060 (2015) X. Chen et. al. Hyperfine Interact. (2015) 235:51 D. Dmytriiev, PhD Thesis, 2021

Idea using cavity doublet

- Position determination
 - Comparison with circular reference
 - Same Depth (TTF)
 - Same f₀

S. Sanjari et. al. Phys. Scr. 014060 (2015) X. Chen et. al. Hyperfine Interact. (2015) 235:51 D. Dmytriiev, PhD Thesis, 2021

Idea using cavity doublet

- Position determination
 - Comparison with circular reference
 - Same Depth (TTF)
 - Same f₀

S. Sanjari et. al. Phys. Scr. 014060 (2015) X. Chen et. al. Hyperfine Interact. (2015) 235:51 D. Dmytriiev, PhD Thesis, 2021

Image / idea: Yuri A. Litvinov

D. Dmytriiev et. al., NIM-B: 463, pp. 320-323 (2020)

GSI Darmstadt

D. Dmytriiev, PhD Thesis (2021).

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

Cavity doublet for R3@RIKEN

- Design GSI Darmstadt in cooperation with MPIK Heidelberg (Max Planck Institute for Nuclear Physics)
- First beam tests are planned for DEC-2024
- Many thanks A to our friends RIKEN Nishina Center:
 - PhD Student: George Hudson-Chang
 - Dr. Sarah Naimi (also with IJCLAB @ IN2P3)
 - Dr. Yoshitaka Yamaguchi
 - Dr. Tetsuya Ohnishi
 - Prof. Takayuki Yamaguchi
 - Many other colleagues

Package arrived in Japan installation September 12th!

Sanjari et. al., Publication in preparation ...

Future plans

- Collaboration: Schottky detectors for S-Ring @ HIAF facility in Huizhou (Guangdong Province):
 - Very promising for mass and lifetime measurement of RIB: High vacuum, high energy, beam diagnostics
- Development by our friends 🤝 @ IMP-Lanzhou:
 - Dr. Qian Wang
 - Dr. Guangyu Zhu
 - Ze Du
 - Peilin He
 - Dr. Xinliang Yang
 - Prof. Junxia Wu
 - Prof. Wang Meng

Future plans

- Collaboration: Schottky detectors for S-Ring @ HIAF facility in Huizhou (Guangdong Province):
 - Very promising for mass and lifetime measurement of RIB: High • vacuum, high energy, beam diagnostics
- Development by our friends 🤝 @ IMP-Lanzhou:
 - Dr. Qian Wang ٠
 - Dr. Guangyu Zhu
 - Ze Du ٠
 - Peilin He

(HIAF)

Picture: Dr. Qian Wang

CHIA

SRing肖特基腔体布局

- Two cavities:
 - High and low Q
- (Isomeric) lifetime measurements (hopefully) in 2025
- Unique possibility of testing the phase measurement method
- Placeholders for elliptical cavities
 - Plans for addition of complimentary position method in 2026

Picture: Dr. Zhu Guangyu 朱光宇 and Qiu Zishuai 邱子帅

Data acquisition and analysis

- Moving away from commercial solutions:
 - Spectrum analyzers
 - Long term time capture device NTCAP (C. Trageser, PhD Thesis, 2018)
- Towards open hardware open source:
 - GNURadio based Software Defined Radios
 - Scalability, easy maintenance
- Analysis code published on GitHUB
 - Python (+ROOT) based framework
 - IQTools / IQGUI (for different DAQs)
 - Barion (Ion calculations)
 - RionID (D. Freire-Fernandez et. al.)
 - Other recent tools for identification / mass measurement
- HPC and some first attempts at ML

R. Steinhagen, A. Krimm et. al. @ GSI

the on Cithus

D. Dmytriiev et al 2020 J. Phys.: Conf. Ser. 1668 012014

Optimizations of data flow

Optimizations for future DAQ and experimental data flow

FCN Call

Outlook for 2025

- Experiment proposal (G-22-00203) during the ²⁰⁸Pb beam time block:
 - Mass & half-life measurements in the neutron-rich N≈116 region (around ¹⁸⁸Hf)
 - Spokesperson: Yuri A. Litvinov
 Optimization of beam time:

 Recording is always running
 Re-inject if there are no isomers, otherwise wait until decay!

 Unique way to efficiently tackle low yield (1 in 1.5 days) and long lived unstable nuclear states!
- Much easier offline processing!
 - Empty injections are easily discarded \rightarrow reduction of error

Current scheme:

Inject	Wait				Prep	are In	ject	Wait	Pre	epare	
Future plan:											
Inject	Check	Inject	Check	Inject	Check	Inject		Check then Wait	Prepare	• •	•
											Time

Thank you! _{謝謝}!

