Contribution ID: 73 Type: Oral Talk

Radiative α capture on $^{12}{\rm C}$ in cluster effective field theory

Monday, 9 September 2024 14:40 (15 minutes)

Radiative α capture on 12 C, 12 C(α,γ) 16 O, is studied within the framework of cluster effective field theory (EFT). We constructed a low energy EFT for the 12 C(α,γ) 16 O reaction and studied the related reactions to fix the parameters of the reaction amplitudes and estimate the astrophysical S factors of 12 C(α,γ) 16 O at the Gamow-peak energy, $E_G=0.3$ -MeV; it is known that E1 and E2 transitions of 12 C(α,γ) 16 O are dominant because of the sub-threshold 1_1^- and 2_1^+ states of 16 O. The theory was applied to the studies of elastic α - 12 C scattering at low energy, β delayed α emission from 16 N, and the E1 transition of 12 C(α,γ) 16 O in which the S_{E1} factor was deduced at E_G . We report the study of E2 transition of 12 C(α,γ) 16 O to estimate the S_{E2} factor at E_G and discuss the uncertainties of estimate of the S factors at E_G in the cluster EFT.

Primary author: ANDO, Shung-Ichi (Sunmoon University)

Presenter: ANDO, Shung-Ichi (Sunmoon University)

Session Classification: Theoretical Nuclear Physics for Astrophysics

Track Classification: Theoretical Nuclear Physics for Astrophysics