Neutrinos and heavy-element nucleosynthesis in supernovae

Woosley, Janka 2005

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

Neutrino physics shapes the

Electron fraction

$$Y_{e,f} \approx \frac{\lambda_{v_{en}}}{\lambda_{v_{en}} + \lambda_{\overline{v}_{ep}}} \approx \left(1 + \frac{L_{\overline{v}_{e}}}{L_{v_{e}}} \frac{\epsilon_{\overline{v}_{e}} - 2\Delta + 1.2\Delta^{2}/\epsilon_{\overline{v}_{e}}}{\epsilon_{v_{e}} + 2\Delta + 1.2\Delta^{2}/\epsilon_{v_{e}}}\right)^{-1}$$

Entropy per baryon

$$S_f \approx 235 C^{-1/6} L_{\overline{\nu}_e, 51}^{-1/6} \epsilon_{\overline{\nu}_e, \text{MeV}}^{-1/3} R_6^{-2/3} \left(\frac{M}{1.4 M_{\odot}} \right) \text{ for } S_f \gg S_N$$

 $S_{\rm tot} \approx S_f + S_N \approx S_f + \ln S_f + 10$

Qian, Woosley 1996

Collective Neutrino Oscillation

- Many body:
 - a system of N neutrinos with discrete energies quantized in a box of volume V
 - two-flavor approximation

$$H = \sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p} + \sum_{p,q} \mu_{pq} \vec{J}_{p} \cdot \vec{J}_{q}$$
$$i \frac{d}{dt} |\Psi\rangle = H |\Psi\rangle$$

Neutrino "polarization vectors" $\vec{P}_a = 2\langle \vec{J}_a \rangle$

• Mean field

$$H = \sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p} + \sum_{p,q} \mu_{pq} \left[\vec{J}_{p} \cdot \langle \vec{J}_{q} \rangle + \langle \vec{J}_{p} \rangle \cdot \vec{J}_{q} - \langle \vec{J}_{p} \rangle \cdot \langle \vec{J}_{q} \rangle \right]$$

$$\frac{d\vec{P}_q}{dt} = \omega_q \vec{B} \times \vec{P}_q + 2\sum_p \mu_{pq} \vec{P}_p \times \vec{P}_q$$

Collective oscillations in supernovae

Label	$E_{\nu,e}$	$E_{\bar{\nu},e}$	$E_{\nu,x}$	$E_{\bar{\nu},x}$	$L_{ u,e}$	$L_{ar{ u},e}$	$L_{ u,x}$	Y_e
	[MeV]	[MeV]	[MeV]	[MeV]	[erg/s]	[erg/s]	[erg/s]	$(1 + \lambda_{\bar{\nu}_e}/\lambda_{\nu_e})^{-1}$
sym	10	10	20	20	9.091×10^{51}	9.091×10^{51}	1.818×10^{52}	0.634
asym2	10	12.5	20	20	9.091×10^{51}	1.136×10^{52}	1.818×10^{52}	0.504
asym2.1	10	13	20	20	9.091×10^{51}	1.182×10^{52}	1.818×10^{52}	0.482
asym3	10	14.28	20	20	9.091×10^{51}	1.298×10^{52}	1.818×10^{52}	0.427
asym4	10	16	20	20	9.091×10^{51}	1.455×10^{52}	1.818×10^{52}	0.366
sym-4nu	10, 11.11	10,11.11	16.67, 20	16.67, 20	9.591×10^{51}	9.591×10^{51}	1.667×10^{52}	0.634
asym2.1-4nu	10, 11.11	12.8, 14.3	16.67, 20	16.67, 20	9.591×10^{51}	1.232×10^{52}	1.667×10^{52}	0.482

We initiate the oscillations at $r_i \simeq 100 \text{ km}$, where $\mu_i = 100$

"neutrino bulb" geometry --single angle approximation

> Balantekin, B.,.., **Wang, X.,** 2024, ApJ 967, 146, arXiv: 2311.02562

6

OMEG2024-Xilu Wang

Collective oscillations in supernovae

Collective oscillations in supernovae

SN neutrino-driven wind trajectories:

 parameterized slow NDW trajectory adapted from Wanajo2011 with various entropy values;
 parameterized high entropy and fast NDW trajectory adapted from Arcones+2007 as in Duan+2011.

nucleosynthesis calculations										
Simulation Models	Entropy S	Dynamical timescale		Position at $\lesssim 10 \text{GK}$						
	$[k_B \text{ per nucleon}]$	$ au_1^a \; [{ m ms}]$	$ au_2^b \; [{ m ms}]$	$r_0 \; [{ m km}]$						
parameterization of	50 (default)	17.5	152	61.58						
-Wanajo2011	100	17.5	344	77.44						
(Wanajo et al. 2011)	150	17.5	500	86.41						
Duan2011 (Duan et al. 2011)	200	12.4	17.9	46.67						

Nucleosynthesis simulation with PRISM

1) four neutrino treatments (nn, nosc, mf, mb) are implemented into PRISM in the form of external $v_e + n$ and $\overline{v_e} + p$ capture rates; neutrino-nuclei interactions are not included 2) Nuclear data: REACLIB reaction rates (Cyburt et al. 2010) + NUBASE β -decay properties (Kondev et al. 2021)

PRISM (Portable Routines for Integrated nucleoSynthesis Modeling): Trevor Sprouse (ND) & Matthew Mumpower (LANL) 9/10/24 OMEG2024-Xilu Wang

r-process astrophysical sites: supernovae?

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

Does this work?

Yes

Meyer+1992, Woosley+1994

• No

Takahashi+1994, Witti+1994, Fuller, Meyer 1995, McLaughlin+1996, Qian & Woosley 1996, Hoffman+1997, Otsuki+2000, Thompson+2001, Terasawa+2002, Liebendorfer+2005, Wanajo 2006, Arcones+2007, Huedepohl+2010, Fischer+2010, Roberts, Reddy 2012, Martinez-Pinedo+2014, Chakraborty+ 2015, Goriely, Janka 2016, etc., etc.

r-process astrophysical sites: supernovae?

SN neutrino-driven wind:

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

a weak r-process (up to A~125) might be possible, with the ultimate extent of nucleosynthesis sensitively depends on neutrino physics (Fuller, Meyer 1995, Balantekin, Yuksel 2005, Johns+2020, Xiong+2020):

- Neutrinos determines the initial neutron richness (Y_e) for r process
- > During alpha particle formation: v_e reduce free neutrons --- alpha effect (Fuller+1995, McLaughlin+1996, Meyer+1998)
- Collective neutrino oscillations raise the effective energy of v_e and \bar{v}_e , to readjust the Y_e value at early time (mostly free nucleons), and enhance the alpha effect (Duan+2011, Wu+2015, Pllumbi+2015, Just+2022...)
- Active-sterile conversions may also has an effect (McLaughlin+1999, Beun+2006, Wu+2014, Pllumbi+2015)

Existence of neutrinos: less robust r-process productions OMEG2024-Xilu Wang

Collective oscillations and r process

r process: neutrinos hinder the synthesis of heavier nuclei, and mainly affect the 3rd peak and beyond region;

for asym3 case with r-process nucleosynthesis barely reach the 3rd peak and beyond \rightarrow Biggest effect of the difference in SN NDW neutrino treatments on the r-process yields: move to weak r-process; many-body treatment has the biggest effect for normal mass hierarchy;

Balantekin, B.,.., **Wang, X.,** 2024, ApJ 967, 146, arXiv: 2311.02562

OMEG2024-Xilu Wang

ν p-process in supernovae

SN neutrino-driven wind:

Existence of neutrinos: enhance heavier elements productions in ν p process

Neutrinos for νp process :

- Determines the initial proton-rich status of NDW at T~10GK
- ➢ v̄_e captures on free protons give rise to a tiny amount of free neutrons, which are captured on the seed nuclei ⁵⁶Ni from the nuclear quasi-equilibrium (QSE), initiating the vp process (Frohlich+2006, Wanajo+2006, Pruet+2006)

 $v_e + n \rightleftharpoons p + e^ \bar{v}_e + p \rightleftharpoons n + e^+$

- Collective neutrino oscillations act to increase the v
 _e flux and create a more robust vp process (Martinez-Pinedo+2011, Martinez-Pinedo+2017, Sasaki+2017, Balantekin 2018...)
- Fast flavor conversion could potentially increase mass loss rate and enhance the vp process (Xiong+2020)
- > Active-sterile neutrino flavor conversion could also help ν p process reach heavier elements between Zr and Cd (Wu+2014)

Collective oscillations and νp process

purple: no neutrino (nn)

cyan: no neutrino oscillation (nosc) blue: many-body calculation of oscillation (mb) orange: mean-field calculation of oscillation (mf) green: inverted mass hierarchy with mb pink: inverted mass

hierarchy with mf

vp process: neutrinos boost the synthesis of heavier nuclei; The difference in SN NDW neutrino treatments brings a difference in yields: many-body treatment has the biggest effect for normal mass hierarchy; Inverted mass hierarchy introduces bigger neutrino effect

Collective oscillations and ν p process with various entropy

★ Initial proton-rich condition(ν p process): with the increased initial entropy, s/k_B =50, 100, 150, the collective neutrino oscillation push the synthesis of heavier nuclei, moving towards the neutron-rich region

Special abundance yields for $s/k_B > 150$: light proton-rich nuclei + heavy neutron-rich nuclei

Collective oscillations and ui process

vi process: new nucleosynthesis process and path

- Occur in a high entropy proton-rich environment with abundant neutrinos: supernovae, hypernovae
- * Abundance yields: a mixture of lighter ν p-process-type pattern and heavier i-process-like pattern, or a fully i-process-like pattern at the highest entropies.
- The nucleosynthetic pathway is clearly distinct from an i process that occurs in mildly neutron-rich conditions

Collective oscillations and ν i process

If the abundance pattern of Wanajo2011 s/k = 50 case follows a typical vp process where p nuclei are dominantly produced, while the abundance patterns resulting from larger initial entropy values shift from a vp process at lower mass to a neutron-rich pattern for heavier nuclei (A ≥ 115 for s/k = 100, A ≥ 100 g/10/24 for s/k = 150, A ≥ 70 for Duan2011).

the vi process abundances are distinct from those of both the solar s process and r process, showing shifted neutron closed shell features and a distinctly higher lanthanide production than the s process.---New astrophysical sources for lanthanides

> Balantekin, B.,.., **Wang, X.,** 2024, ApJ 967, 146, arXiv: 2311.02562¹⁶

Summary

- Neutrinos play a key role in heavy-element nucleosynthesis in supernovae.
- However, the neutrino physics in candidate heavy-element nucleosynthesis events remains poorly understood. Different treatments of the collective neutrino oscillations can have a non-negligible impact on the the operation of the vp-process and r-process nucleosynthesis in supernovae.
- We found that the difference in the neutrino treatments has the largest impact on proton-rich nucleosynthesis, particularly at high entropies. Indeed, neutrino interactions, especially when neutrino oscillations are included, can nudge an initial vp process neutron rich, resulting in a unique combination of proton-rich low-mass nuclei as well as neutron-rich high-mass nuclei. We describe this novel neutrino-induced neutron capture process as the "vi process".

• Thanks for your attention. Questions?