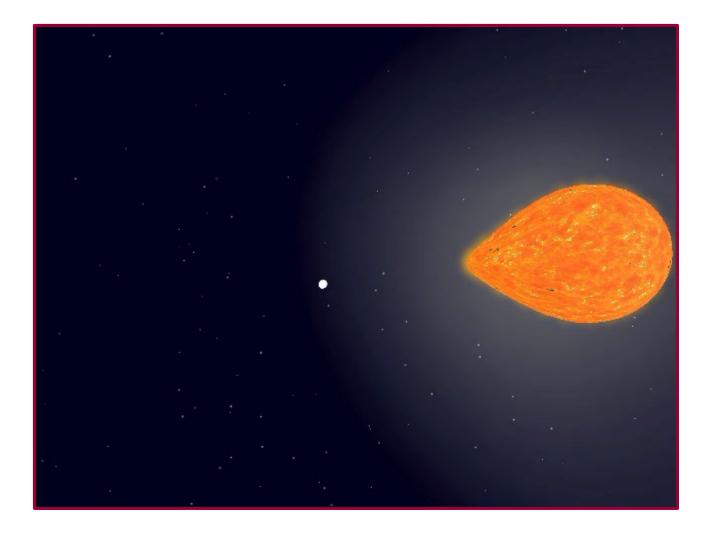
Recent Advances in the Modeling and Nucleosynthesis of Classical Novae & X-Ray Bursts


Jordi José

Dept. Física, Univ. Politècnica de Catalunya (UPC) & Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona

Recent Advances in the Modeling of Type I X-Ray Bursts and Nova Outbursts

Jordi José

About 50% of the stars of our Galaxy form double or multiple systems (a fraction evolve into systems containing a WD or a NS)

Novae vs. X-Ray Bursts

Novae	X-Ray Bursts (Type I)
Moderate rise times (<1 – 2 days) $L_{Peak} \sim 10^4 - 10^5 L_{\odot}$ $E_{output} \sim 10^{45} \text{ ergs}$	Fast rise times (<1 - 10 s) $L_{Peak} \sim 10^4 - 10^5 L_{\odot}$ $E_{output} \sim 10^{39-40}$ ergs [in 10- 100 s]
Mass ejected: $10^{-7} - 10^{-4} M_{\odot}$ (~10 ³ km s ⁻¹)	$\alpha = L_{\text{persistent}}/L_{\text{burst}} \sim 100$ Mass ejected?
Recurrence: $\sim 1 - 100$ yr (RNe) $\sim 10^4 - 10^5$ yr (CNe) Frequency: ~ 50 yr ⁻¹	Recurrence: ~ hrs – days Sources detected: ~ 100
[Obs. ~ 10 yr ⁻¹]	

Novae are XRBs in slow motion... ...XRBs are novae in fast forward

Jordi José

Type I X-Ray Bursts

Mass Ejection

The potential impact of XRB nucleosynthesis on **Galactic abundances** is still a matter of debate: **ejection** from a NS **unlikely** because of its large **gravitational potential** (ejection from the surface a NS of mass *M* and radius *R* requires $GMm_p/R \sim 200$ MeV/nucleon, whereas only a few MeV/nucleon are released from thermonuclear fusion)

 $NS \rightarrow M_{NS} \sim 1.4 M_{\odot}, R_{NS} \sim 10 \text{ km} \rightarrow v_{esc} = \sqrt{2G M_{NS}/R_{NS}} \sim 190\ 000 \text{ km s}^{-1}$

 $[WD \rightarrow M_{WD} \sim 1 M_{\odot}, R_{WD} \sim 6000 \text{ km} \rightarrow v_{esc} \sim 7000 \text{ km s}^{-1}]$

XRBs are halted by fuel consumption (due to efficient CNO-breakout reactions) rather than by expansion \rightarrow nearly **constant pressure** at ignition depth

Some models achieve high pressures and densities at the envelope base \rightarrow strong bursts, with short periods of super-Eddington luminosities, frequently accompanied by the presence of precursors in the X-ray light curve, together with mass-loss episodes through radiation-driven winds \rightarrow ejection of a tiny fraction of the envelope (Weinberg et al. 2006a). It has been suggested that XRBs might account for the Galactic abundances of the problematic light *p*-nuclei (Schatz et al. 1998)

Radiation–driven wind models: Kato (1983), Ebisuzaki et al. (1983), and Quinn and Paczynski (1985). GR effects were introduced by Paczynski and Proszynski (1986), and Turolla et al. (1986)

A&A 638, A107 (2020) https://doi.org/10.1051/0004-6361/201936895 © ESO 2020

Simulations of stellar winds from X-ray bursts

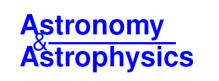
Characterization of solutions and observable variables

Y. Herrera^{1,2}, G. Sala^{1,2}, and J. José^{1,2}

Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 16, 08019 Barcelona, Spain e-mail: gloria.sala@upc.edu

² Institut d'Estudis Espacials de Catalunya, c/Gran Capità 2-4, Ed. Nexus-201, 08034 Barcelona, Spain

Received 11 October 2019 / Accepted 29 April 2020


+

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 189:204–239, 2010 July © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0067-0049/189/1/204

HYDRODYNAMIC MODELS OF TYPE I X-RAY BURSTS: METALLICITY EFFECTS

JORDI JOSÉ^{1,2}, FERMÍN MORENO¹, ANUJ PARIKH³, AND CHRISTIAN ILIADIS^{4,5} ¹ Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, C./ Comte d'Urgell 187, E-08036 Barcelona, Spain; ² Institut d'Estudis Espacials de Catalunya (IEEC), Ed. Nexus-201, C/ Gran Capità 2-4, E-08034 Barcelona, Spain ³ Physik Department E12, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany; anuj.parikh@ph.tum.de ⁴ Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA; iliadis@unc.edu ⁵ Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA *Received 2009 December 16; accepted 2010 May 24; published 2010 June 30* A&A 678, A156 (2023) https://doi.org/10.1051/0004-6361/202346190 © The Authors 2023

Mass-loss and composition of wind ejecta in type I X-ray bursts

Y. Herrera^{1,2,3}, G. Sala^{1,2}, and J. José^{1,2}

¹ Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 16, 08019 Barcelona, Spain

² Institut d'Estudis Espacials de Catalunya, c/Gran Capità 2-4, Ed. Nexus-201, 08034 Barcelona, Spain

³ Institute of Space Sciences, c/Can Magrans, 08193 Cerdanyola del Vallès, Barcelona, Spain e-mail: herrera@ice.csic.es

Received 20 February 2023 / Accepted 5 May 2023

Y. Herrera

XRB Model with 1.4 M_{sun} , 13.1 km NS; $Z_{acc} = 0.02$, $M_{acc} = 1.75 \times 10^{-9} M_{sun} \text{ yr}^{-1}$) $\rightarrow M_{eiec} = 3.1 \times 10^{-14} M_{sun}!$

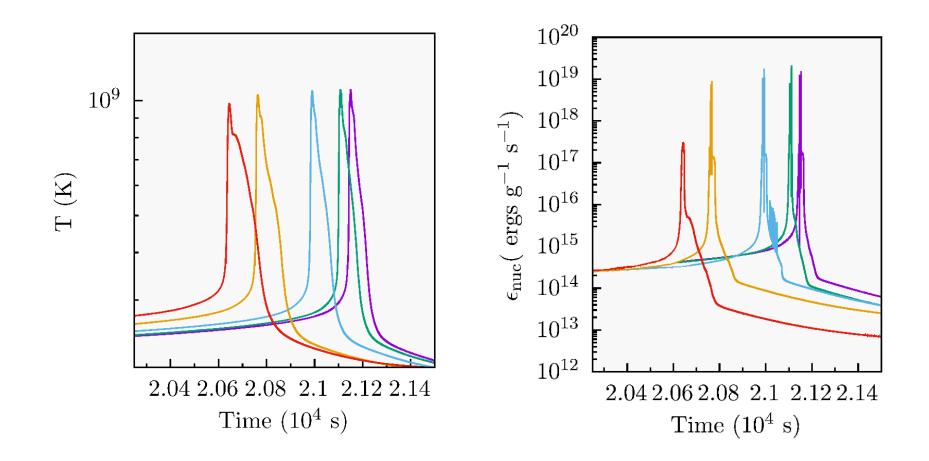
0.1% of the envelope is ejected per burst (mostly as ⁶⁰Ni, ⁶⁴Zn, [⁶⁸Ge], and ⁵⁸Ni). The ejecta also contains some tiny amounts of light **p-nuclei**, but **not enough** to account for their Galactic abundances

XRBs **do contribute** (to some extent!) to the Galactic abundances

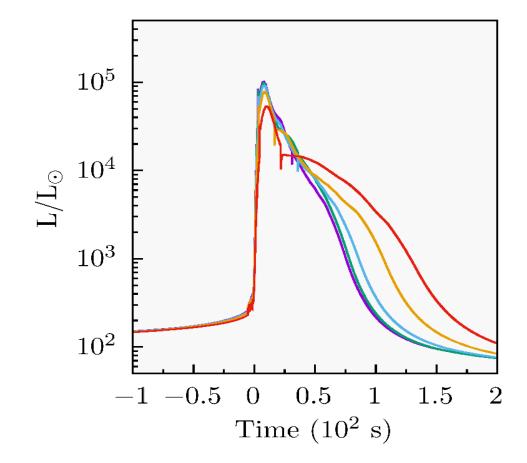
Jordi José

Type I XRB Models with Rotation

First models of XRB with Rotation (1D)



D. Martin (PhD Thesis 2023)


Study of the effect of (shellular) rotation on type I XRB properties

- **Pressure-lifting effect** caused by rotation: maximum density and pressure at the base of the envelope decrease as the angular velocity of the envelope increases
- The **size** of the **envelope shows a significant growth** with the increase of the angular velocity (up to 66% for the fastest rotation model considered)
- Bursts computed with higher angular velocities have smaller recurrence times

Temperature and nuclear energy generation rate of first burst for Model 1 (purple; $\Omega_0/\Omega_{crit} = 0$), Model 2 (green; $\Omega_0/\Omega_{crit} = 0.2$), Model 3 (blue; $\Omega_0/\Omega_{crit} = 0.4$), Model 4 (orange; $\Omega_0/\Omega_{crit} = 0.6$) and Model 5 (red; $\Omega_0/\Omega_{crit} = 0.8$). Models with larger angular velocity Ω_0 tend to achieve smaller peak temperatures and nuclear energy generation rates

Brightest bursts are those with smallest angular velocity Ω_0 (bursts with high rotation rates have long decays [increase up to 45%] and broad light curves)

Martin & JJ (2024, in preparation)

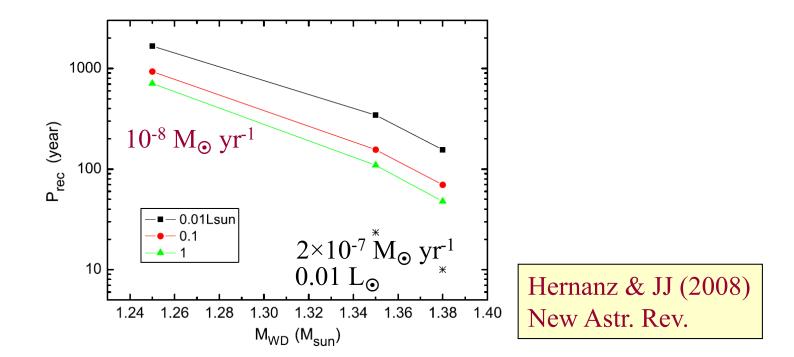
Jordi José

Jordi José

Classical (and Recurrent) Novae

Recurrent Novae

long period binaries: very homogeneous class (WD + RG), ex: RS Oph
short period binaries: heterogeneous class (WD + MS)
→ Subclasses: U Sco, CI Aql, T Pyx [Anupama 2007]


Recurrence time: 1 - 100 yr

NOT all the accreted material is ejected → SN Ia progenitors

Jordi José

Recurrence time: $1 - 100 \text{ yr} \rightarrow$

 $M_{acc} \sim 10^{-7} - 10^{-8} M_{\odot} \text{ yr}^{-1}$ M_{WD} close to Chandrasekhar limit High initial L_{WD}

Hydrodynamic Simulations of the Recurrent Nova T Coronae Borealis (T CrB)

Jordi José^{1,2} and Margarita Hernanz^{2,3}

Departament de Física, EEBE, Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 16, E-08019 Barcelona, Spain

 ² Institut d'Estudis Espacials de Catalunya (IEEC), c/Esteve Terradas 1, E-08860 Castelldefels, Spain
³ Institut de Ciències de l'Espai (ICE-CSIC), Campus UAB, Camí de Can Magrans s/n, E-08193 Bellaterra, Spain e-mail: jordi.jose@upc.edu

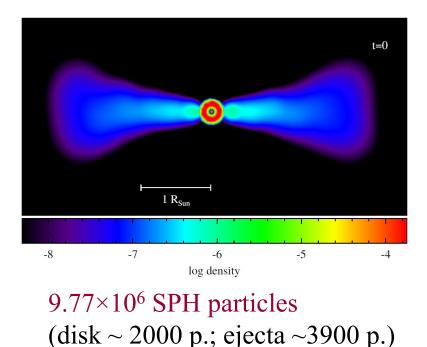
May 8, 2024

A&A, in prep.

Interaction Between the Ejecta, the Accretion Disk, and the Secondary Star in the Recurrent Nova System U Sco

Joana Figueira^{1,2}, Jordi José^{1,2}, Rubén Cabezón³, and Domingo García-Senz^{1,2}

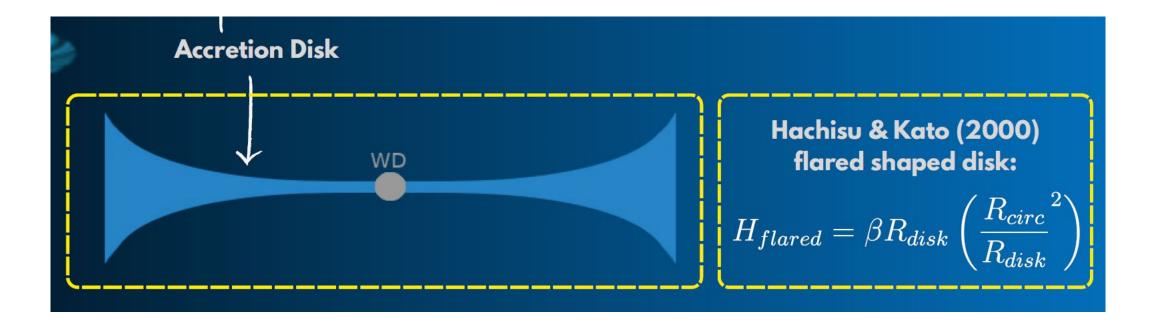
A&A, submitted



t=0

 12000 ± 2000 pc from Earth

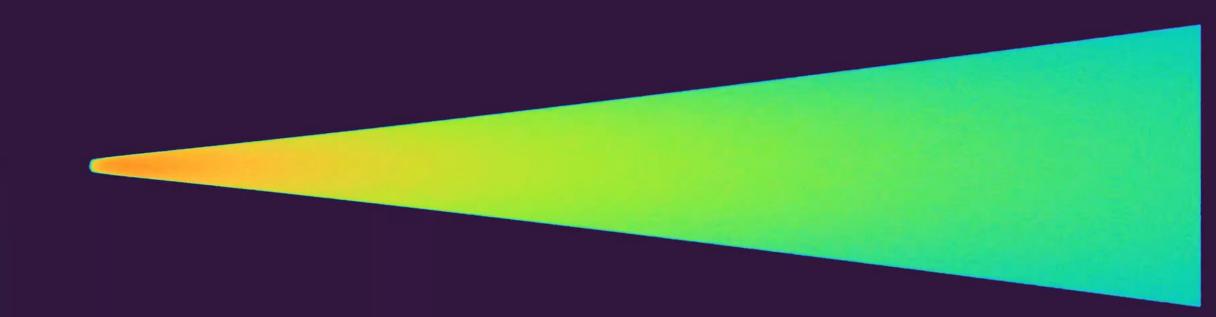
J. Figueira (PhD thesis 2023)


Seen in outburst in 1863, 1906, 1936, 1945?, 1969?, 1979, 1987, 1999, 2010... and **June 6, 2022**

 $10 \quad -9 \quad -8 \quad -7 \quad -6 \quad -5 \quad -4$

Rotation of the binary system was included

Analysis of the stability of the disk: in 6 out of 8 models computed, the disk gets fully disrupted and swept up. These models are characterized by flared disks and ratios $M_{ejecta}/M_{disk} \ge 1$



Contamination of the secondary is **negligible** in recurrent novae with large P_{orb}

A. Sanz (PhD thesis)

10⁶ SPH particles (2D axisym.) \rightarrow 10⁹ particles (3D)

Day 1 00:00

Sanz, García-Senz & JJ (2024, in preparation)

NUCLEI IN THE COSMOS XVIII, Girona [Conference Center] June 15-20, 2025

NUCLEI IN THE COSMOS XVIII Barcelona/Girona, June 2025

NIC SCHOOL, Barcelona [Royal Academy of Sciences & Arts] June 9-13, 2025

Jordi José Recent Advances in the Modeling and Nucleosynthesis of Classical Novae, & X-Ray Bursts 17th International Symposium on Origin of Matter and Evolution of Galaxies Chengdu (China), September 8 – 13, 2024