The 17th International Symposium on Origin of Matter and Evolution of Galaxies

PandaX

Dark Matter and Neutrino Program

HAN, Ke 韩柯 (SJTU) For the PandaX Collaboration 2024/9/8

上海交大 韩柯

PandaX: Particle and Astrophysical Xenon Experiment

15 institutions, ~100 collaborators

PandaX detectors

PandaX DM and Neutrino

PandaX-4T @ Hall B2 of CJPL-II

PandaX-4T

- A multi-ton dual-phase xenon TPC at B2 hall of China Jinping Underground Laboratory
- 1.2 m (D) ×1.2 m (H); Sensitive volume: 3.7-ton LXe; 3-inch PMTs: 169 top / 199 bottom
- Water shielding

2020/11 – 2021/04	Commissioning (Run 0) 95 days data
2021/07 – 2021/10	Tritium removal xenon distillation, gas flushing, etc.
2021/11 – 2022/05	Physics run (Run 1) 164 days data
2022/09 – 2023/12	CJPL B2 hall construction xenon recuperation, detector upgrade

Detector is taking Run 2 data

Liquid Xenon Time Projection Chamber (LXe TPC)

- Prompt scintillation signal (S1) followed by drift electron signal (S2)
- Measures the 3D position, energy, and time
- Nuclear Recoil (NR) and electron recoil (ER) discrimination
- Single-site (SS) and multi-site (MS) event discrimination
- Large monolithic target: High signal efficiency and effective self-shielding

• LXe TPC as a Total-Absorption 5D Calorimeter

Multiple physics goals in one detector

Multiple physics goals in one detector

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

上海交大 韩柯

Current landscape

上海交大 韩柯

PandaX-4T Summer 2024 data release (Run 0+Run 1)

- Run 1: Gate -6kV, Cathode -16kV (Gate trip once)
- Updated detector response and background budgets

Major improvement

- Significant reduction from Run0 to Run1 (~8 times)
- · Consistent with S1-only estimation used before unblinding

S1 [PE]

Ω

Most recent DM result

- Fully blind analysis Run0+Run1: Scanning WIMP mass from 5 to 10000 GeV/c²
- No significant excess!
- State-of-the-art: >100 GeV/c²
- Lowest upper limit: 1.6×10⁻⁴⁷ cm² at 40 GeV/c² after -1o power-constraint

arXiv:2408.00664

Multiple physics goals in one detector

PandaX DM and Neutrino

Neutrinoless Double beta decay (NLDBD)

- Neutrinoless double beta decay probes the nature of neutrinos: Majorana or Dirac
- Lepton number violating process
- Measure energies of emitted electrons

Search for $^{136}\text{Xe}~\text{Ov}\beta\beta$ with LXe TPC

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Run time	Sensitivity/Limit (90% CL, year)	Year
PandaX-II	~200	4.2%	219	403.1 days	2.4 ×10 ²³	2019
XENON1T	~20	0.8%	741	202.7 days	1.2×10^{24}	2022
PandaX-4T	6	1.9%	~650	~250 days	> 10 ²⁴	Expeted soon

上海交大 韩柯

Multiple physics goals in one detector

• Single vs multiple site event

^{134}Xe (0)2v $\beta\beta$ searches at PandaX-4T

- Q=826 keV; Half-life from theoretical predictions: 10²⁴-10²⁵ yr; Never been observed
- Previous 2vββ (0vββ) half-life limit from EXO-200 : T >8.7x10²⁰ yr (1.1x10²³ yr) at 90% CL
- PandaX-4T: more ¹³⁴Xe; much less ¹³⁶Xe; wider energy range; discovery possible

	PandaX-4T	EXO-200
¹³⁴ Xe mass	68.7 kg	18.1 kg
¹³⁶ Xe abundance	8.90%	81%
Analysis threshold	200 keV	460 keV
Live Time	94.9 days	600 days

¹³⁴Xe half-life limits @ PandaX-4T

- Simultaneous fit for $^{\rm 134}{\rm Xe}~{\rm 2}\nu\beta\beta$ and $0\nu\beta\beta$

• 90% CL lower limits on the half-life: $T_{1/2}^{2\nu\beta\beta} > 2.8 \cdot 10^{22} \text{ yr}$ and $T_{1/2}^{0\nu\beta\beta} > 3.0 \cdot 10^{23} \text{ yr}$

PandaX, Phys.Rev.Lett. 132 (2024) 15, 152502

上海交大 韩柯

PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory

- Active target: 43 tons of Xenon
 - Test the WIMP paradigm to the neutrino floor
 - Explore the Dirac/Majorana nature of neutrino
 - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable detector improvements:
 - High-granularity, low-background 2-in PMT array
 - Cu/Ti vessel for improved radiopurity
 - Inner liquid scintillator veto

arXiv:2402.03596

PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory

- Active target: 43 tons of Xenon
 - Test the WIMP paradigm to the neutrino floor
 - Explore the Dirac/Majorana nature of neutrino
 - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable detector improvements:
 - High-granularity, low-background 2-in PMT array
 - Cu/Ti vessel for improved radiopurity
 - Inner liquid scintillator veto

arXiv:2402.03596

PandaX-xT physics

- WIMP search FV mass: 34 tons
- 99.7% ER rejection power and a 50% NR acceptance
- 4 ton of ^{136}Xe : one of the largest $0\nu\beta\beta$ experiments
- Effective self-shielding: Xenon-related background dominates in the 8.4-tonne center FV

• LXe TPC as a Total-Absorption 5D Calorimeter is a powerful tool

• Fully exploit the entire energy range of LXe TPC for rich physics in dark matter and neutrino physics

Thank you very much

We welcome new collaborators

at PandaX-xT

Competitive in other neutrino physics topics as well

- Coherent scattering of solar ⁸B neutrino: from a first observation in LXe TPC to precision measurement
- · Electron scattering of solar pp neutrino: competitive precision at a wider energy range
- Neutrinos with abnormal magnetic moments: a better sensitivity than astrophysical observations

Head-to-head with other DM/0vßß experiments

	Bkg rate (/keV/ton/y)	Energy resolution	Mass (ton)	Run time	Sensitivity/Lim it (90% CL, year)
PandaX-4T	6	1.9%	4	94.9 days	> 10 ²⁴
XENONnT	1	0.8%	6	1000 days (expected)	2 × 10 ²⁵
LZ	0.3	1%	7	1000 days (expected)	1×10^{26}
KamLAND-ZEN	0.002	5%	0.8 (¹³⁶ Xe)	1.5 years	2.3×10^{26}
nEXO	0.006	1%	5 (¹³⁶ Xe)	10 years	1.35 × 10 ^{28 **}
DARWIN	0.004*	0.8%	40	10 years	2 × 10 ²⁷
PandaX-xT	0.002*	1%	43	10 years	3×10 ²⁷

* Major difference from cosmogenic ¹³⁷Xe; ** $\frac{S}{\sqrt{R}}$ sensitivity is 6×10²⁷ yr, for detector performance comparison in the table. PandaX DM and Neutrino 上海交大 韩柯

New 2" multi-anode R12699 PMT for LXe TPC

- Higher granularity while maintaining low dark noise: best of both large PMT and SiPM
 - Improved position reconstruction for better event topology
 - 2" array has an effectively wider dynamic range for DM and DBD simultaneously
 - Faster timing for possible pulse shape analysis or Cerenkov/Scintillation separation
- Collaboration between PandaX and Hamamatsu for a low-radioactivity version of R12699

Conceptual array for a PandaX-4T-sized TPC

PandaX DM and Neutrino

Possible isotope seperation/enrichment

- PANDAX PARTICLE AND ASTROPHYSICAL XEION TEC
- Xenon with artificially modified isotopic abundance (AMIA) for smoking gun discovery
 - A split of odd and even nuclei
 - Further enrichment of ¹³⁶Xe
 - to improve sensitivity to spin-dependence of DM-nucleon interactions and $0\nu\beta\beta$

Detection of double beta decay

• Examples:

$${}^{136}_{54}Xe \rightarrow {}^{136}_{56}Ba + 2e^- + (2\bar{v})$$

$${}^{130}_{52}Te \rightarrow {}^{130}_{54}Xe + 2e^- + (2\bar{v})$$

- Measure energies of emitted electrons
- Electron tracks are a huge plus
- Daughter nuclei identification

Simulated track of $0\nu\beta\beta$ in high pressure Xe

Extremely slow process

- $2\nu\beta\beta$: Second-order weak interaction; half-life ~ 10^{20} yr
- Sensitivity of next-generation $0v\beta\beta$ experiment: $10^{27}yr$
 - Ton-scale experiment \sim 1 signal per year

Half life sensitivity $\propto \eta \cdot \epsilon \sqrt{\frac{M \cdot t}{1 + SL}}$

Detector

Detecting

Background

Phase space factor

Nuclear matrix element

Energy

Isotopic

Measuring

time

Solar pp neutrino scattering on electrons

- The world's leading direct detection result is from Borexino with a recoil energy of >165 keV
- PandaX-4T aims to measure the lower energy spectrum than Borexino

Solar pp neutrino scattering on electrons

- The world's leading direct detection result is from Borexino with a recoil energy of >165 keV
- PandaX-4T aims to measure the lower energy spectrum than Borexino

PandaX-4T result

- The first solar pp neutrino measurement in recoil energy from 24 to 144 keV with 0.63-tonne × year of PandaX-4T Run 0 exposure
- Consistent with Standard Solar Model and existing measurements.

Multiple physics goals in one detector

First indication of solar ⁸B neutrino CEvNS

- 1.5 tonne-year exposure
- (S1+S2) and (S2-only) data combined
- 2.64 **σ**!
- Announced on 2024/7/8 at IDM2024; 7/15 to arXiv and PRL

国际竞争: XENONnT 2.73 σ, 7/10 IDM公布, 8/6 arXiv

Data selection

- An identical FV as in ¹³⁶Xe analysis, total isotopic exposure: 17.9 kg·yr
- Single site vs multi-site selection measured by ²³²Th calibration data
 - Little impact to DBD signals (β SS events)

PandaX, Phys.Rev.Lett. 132 (2024) 15, 152502

Signal efficiencies

- + 134Xe 2 $u\beta\beta$ and 0 $u\beta\beta$ events generated with the theoretical calculation
- The signal events went through PandaX-4T simulation and data processing chain

- ROI [200,1000]keV cut:
 - $2\nu\beta\beta$: 60.56%
 - 0νββ: 99.98%

- SS ratio in ROI:
 - $2\nu\beta\beta$: 99.89%
 - 0νββ: 98.23%

Physical Review C 85, 034316 (2012)

Background model

	Component	Input Counts	Constraint	
	⁶⁰ Co	130	13%	
Materials	⁴⁰ K	133	8%	
	²³² Th	950	5%	Measured in 136 Xe 2 $ uetaeta$ analysis
	²³⁸ U	274	8%	Research 2022 (2022) 9798721
	¹³⁶ Xe	12372	5%	
	²¹² Pb	1012	29%	Measured by its daughter ²¹² Po alpha decay
	⁸⁵ Kr	296	52%	Determined by $\beta\text{-}\gamma$ emission through the metastable state ^{85m}Rb
LXe	¹³³ Xe	3423	10%	Estimated the $\beta+\gamma$ shoulder of $^{133}\mbox{Xe}$ between 90 and 120 keV
	²¹⁴ Pb	19429	Free	Determined by 222Rn
	¹²⁵ Xe	-	Free	short-lived xenon isotopes induced by neutron calibration
	Other Xe	-	Free	¹²⁷ Xe and ^{129m} Xe