Benda Xu

Nucleosynth sis and Neutrinos

Reactor ν and JUNO

Design and Constructio

Natural u

Conclusion

Jiangmen Underground Neutrino Observatory

Benda Xu on behalf of the JUNO collaboration

Tsinghua University, Center for High Energy Physics

2024-09-08 OMEG2024 @ Chengdu

Benda Xı

Nucleosynthesis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural ν Conclusion

Neutrinos are ubiquitous in nucleosynthesis

• ν accompany weak interactions.

The standard model of particle physics

Standard model had tremendous success for half a century. credit: quantamagazine.org

Benda Xu

Nucleosynthesis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural u

Conclusior

Non-zero ν mass beyond the standard model (BSM)

Non-zero $m_{
u}$ is established as a solution to the solar neutrino problem.

Benda Xu

Nucleosynthesis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural uConclusion Non-zero ν mass beyond the standard model (BSM)

Non-zero $m_{
u}$ is established as a solution to the solar neutrino problem.

Indicates the existance of right-handed counterparts:

- Lorentz: try travel faster than a $\nu_{\rm L}$.
- Higgs: right-handed ν to have mass.

$$\mathcal{L} = \frac{1}{2} M_{\mathsf{N}} \overline{N_{\mathsf{R}}^c} N_{\mathsf{R}} + Y_{\nu} H \overline{L_{\mathsf{L}}} N_{\mathsf{R}} + \dots + \mathsf{h.c.}$$

 $M_{\rm N} \gg m_{\nu}$ is the mass of majorana right-handed $\nu.$

Benda Xı

Nucleosynthesis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural uConclusion Non-zero u mass beyond the standard model (BSM)

Non-zero $m_{
u}$ is established as a solution to the solar neutrino problem.

Indicates the existance of right-handed counterparts:

- Lorentz: try travel faster than a $\nu_{\rm L}$.
- Higgs: right-handed ν to have mass.

$$\mathcal{L} = \frac{1}{2} M_{\mathsf{N}} \overline{N_{\mathsf{R}}^c} N_{\mathsf{R}} + Y_{\nu} H \overline{L_{\mathsf{L}}} N_{\mathsf{R}} + \dots + \mathsf{h.c.}$$

 $M_{\rm N} \gg m_{\nu}$ is the mass of majorana right-handed $\nu.$

The standard solar model defeated standard model of particle physics.

- Solar physicists won the battle against their particle colleagues;
- Particle physicists are excited to lose!

Benda Xu

Nucleosynthesis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural u

Conclusion

The inevitable majorana term and seesaw mechanism

$$\mathcal{L} = \frac{1}{2} M_{\mathsf{N}} \overline{N_{\mathsf{R}}^c} N_{\mathsf{R}} + Y_{\nu} H \overline{L_{\mathsf{L}}} N_{\mathsf{R}} + \dots + \mathsf{h.c.}$$

Seesaw mechanism $m_{
m
u} \propto 1/M_{
m N}$ is a minimal extension to the standard model.

Benda Xu

Nucleosynthesis and Neutrinos

Reactor ν and JUNO

Design and Constructio

Natural ν Conclusion The inevitable majorana term and seesaw mechanism

$$\mathcal{L} = \frac{1}{2} M_{\mathsf{N}} \overline{N_{\mathsf{R}}^c} N_{\mathsf{R}} + Y_{\nu} H \overline{L_{\mathsf{L}}} N_{\mathsf{R}} + \dots + \mathsf{h.c.}$$

Seesaw mechanism $m_{\nu} \propto 1/M_{\rm N}$ is a minimal extension to the standard model. Clues to the difficult problems of physics, astronomy and cosmology:

- 1 How ν have mass and why the m_{ν} is so small (< 1 eV).
- 2 If lepton number is violated i.e. if there are majorana fermions in nature.
- **3** If leptogensis created the matter-antimatter asymmetry.
 - \rightarrow the origin of matter preluding nucleosynthesis.
- **4** $\nu_{\rm R}$ is among the dark matter candidates.
 - \rightarrow gravitational evolution of galaxies.

Benda Xu

Nucleosynthesis and Neutrinos

Reactor u and JUNO

Design and Constructio

Natural ν Conclusion

The inevitable majorana term and seesaw mechanism

$$\mathcal{L} = \frac{1}{2} M_{\mathsf{N}} \overline{N_{\mathsf{R}}^c} N_{\mathsf{R}} + Y_{\nu} H \overline{L_{\mathsf{L}}} N_{\mathsf{R}} + \dots + \mathsf{h.c.}$$

Seesaw mechanism $m_{\nu} \propto 1/M_{\rm N}$ is a minimal extension to the standard model. Clues to the difficult problems of physics, astronomy and cosmology:

- 1 How ν have mass and why the m_{ν} is so small (< 1 eV).
- 2 If lepton number is violated i.e. if there are majorana fermions in nature.
- **3** If leptogensis created the matter-antimatter asymmetry.
 - \rightarrow the origin of matter preluding nucleosynthesis.
- **4** $\nu_{\rm R}$ is among the dark matter candidates.
 - \rightarrow gravitational evolution of galaxies.

JUNO is the next milestone

to measure the ν mass spectra and falsify $\nu_{\rm L}\text{-}N_{\rm R}$ mixing.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural ν Conclusion

Roadmap of nucleosynthesis and neutrino

- 60 $\bar{
 u}/{
 m day}$, 1.8–8 MeV
- JUNO: many reactor ν traveling for just the right distance $52.5\,{\rm km}.$

• 52.5 km is the sweet spot for ν oscillation.

ν oscillation

Jiangmen Undergroun Neutrino Observator

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural ν

Conclusion

 $|\nu_{\alpha}(t)\rangle = \sum_{i=1,2,3} U_{\alpha i}^{*} |\nu_{i}(t)\rangle \qquad \begin{array}{l} \text{Mixing of different } \nu \text{ mass eigenstates leads to} \\ \text{oscillation:} \end{array}$

$$\langle \nu_{\rm e} \, | \, \nu_{\rm e}(t) \rangle = |\langle \nu_{\rm e} \, | \, \nu_{\rm 1} \rangle|^2 + e^{-i\frac{\Delta m_{21}^2 L}{2E}} |\langle \nu_{\rm e} \, | \, \nu_{\rm 2} \rangle|^2 + e^{-i\frac{\Delta m_{31}^2 L}{2E}} |\langle \nu_{\rm e} \, | \, \nu_{\rm 3} \rangle|^2$$

describes the survival probability of ν_e as $P(\nu_e \rightarrow \nu_e) = |\langle \nu_e | \nu_e(t) \rangle|^2$.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural u

Conclusion

Detecting neutrinos with JUNO

Sensitive to mass differences $\Delta m^2_{31}, \Delta m^2_{21}$ and mixing angles θ_{12}, θ_{13} .

$$\begin{aligned} |\langle \nu_{e} | \nu_{1} \rangle| &= \cos \theta_{12} \sin \theta_{13} \\ |\langle \nu_{e} | \nu_{2} \rangle| &= \sin \theta_{12} \cos \theta_{13} \\ |\langle \nu_{e} | \nu_{3} \rangle| &= \sin \theta_{13} \end{aligned}$$

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructio

Natural ν

Conclusion

Detecting neutrinos with JUNO

Sensitive to mass differences $\Delta m^2_{31}, \Delta m^2_{21}$ and mixing angles θ_{12}, θ_{13} .

 $\begin{cases} |\langle \nu_{e} | \nu_{1} \rangle| = \cos \theta_{12} \sin \theta_{13} \\ |\langle \nu_{e} | \nu_{2} \rangle| = \sin \theta_{12} \cos \theta_{13} \\ |\langle \nu_{e} | \nu_{3} \rangle| = \sin \theta_{13} \end{cases}$

$$\begin{split} \text{Non-unitarity} & \sum_{i=1}^3 |\langle \nu_{\rm e} \, | \, \nu_i \rangle|^2 < 1 \text{ indicates the} \\ \text{existance of } & N_{\rm R} \text{ and } \langle \nu_{\rm e} \, | \, N_{\rm R} \rangle > 0. \end{split}$$

Reactor ν and

Sensitive to mass differences $\Delta m_{31}^2, \Delta m_{21}^2$ and mixing angles θ_{12}, θ_{13} .

 $\begin{cases} |\langle \nu_{e} | \nu_{1} \rangle| = \cos \theta_{12} \sin \theta_{13} \\ |\langle \nu_{e} | \nu_{2} \rangle| = \sin \theta_{12} \cos \theta_{13} \\ |\langle \nu_{e} | \nu_{3} \rangle| = \sin \theta_{13} \end{cases}$

Non-unitarity $\sum |\langle \nu_{\rm e}\,|\,\nu_i\rangle|^2 < 1$ indicates the existance of $N_{\rm R}$ and $\langle \nu_{\rm e} | N_{\rm R} \rangle > 0$.

JUNO

6 years

12%

0.5%

0.2%

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructio

Natural ν Conclusion

ν mass ordering (NMO): sign of Δm^2_{31}

•
$$\Delta m_{21}^2 = m_2^2 - m_1^2 = 7.5 \times 10^{-5} \, \mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = m_3^2 - m_1^2 = 2.4 \times 10^{-3} \,\mathrm{eV}^2$$

- normal order: $m_3^2 > m_1^2;$ inverted order: $m_3^2 < m_1^2$
- imprints subtle difference on energy spectra.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructio

Natural ν Conclusion

ν mass ordering (NMO): sign of Δm^2_{31}

•
$$\Delta m_{21}^2 = m_2^2 - m_1^2 = 7.5 \times 10^{-5} \, \mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = m_3^2 - m_1^2 = 2.4 \times 10^{-3} \,\mathrm{eV}^2$$

- normal order: $m_3^2 > m_1^2;$ inverted order: $m_3^2 < m_1^2$
- imprints subtle difference on energy spectra.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructio

Natural ν Conclusion

ν mass ordering (NMO): sign of Δm^2_{31}

•
$$\Delta m_{21}^2 = m_2^2 - m_1^2 = 7.5 \times 10^{-5} \, \mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = m_3^2 - m_1^2 = 2.4 \times 10^{-3} \,\mathrm{eV}^2$$

- normal order: $m_3^2 > m_1^2;$ inverted order: $m_3^2 < m_1^2$
- imprints subtle difference on energy spectra.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural uConclusion

Sensitivity to ν mass ordering

 $\Delta\chi^2$ is the χ^2 different between correct and wrong hypothesis.

NMO sensitivity

 3σ determination in 6.5 years.

arXiv:2405.18008

Benda X

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural u

Sensitivity to ν mass ordering

 $\Delta\chi^2$ is the χ^2 different between correct and wrong hypothesis.

NMO sensitivity

 3σ determination in 6.5 years.

Keys to success

- large exposure;
- measurement of ν energy;
- understanding and control of backgrounds.

arXiv:2405.18008

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor u and JUNO

Design and Construction

Natural uConclusion

JUNO design: a liquid scintillator detector

large exposure:

- proven technology to scale up.
- world's largest by $20 \times$.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor u and JUNO

Design and Construction

Natural uConclusion

JUNO design: a liquid scintillator detector

large exposure:

- proven technology to scale up.
- \bullet world's largest by $20\times.$

measurement of ν energy;

- bright liquid scintillator.
- maximize the coverage of photomultiplier tubes.
- $\bullet~>1300$ photo-electrons/MeV.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor u and JUNO

Design and Construction

Natural uConclusion

JUNO design: a liquid scintillator detector

large exposure:

- proven technology to scale up.
- \bullet world's largest by $20\times.$

measurement of ν energy;

- bright liquid scintillator.
- maximize the coverage of photomultiplier tubes.
- $\bullet~>1300~{\rm photo-electrons/MeV}.$

control of backgrounds.

- effective impurity removal: filteration, distillation, absorption.
- active shield of water and μ tracker.

$ar{ u}$ detection with inverse beta decay (IBD)

 e^+/γ scintillation light are collected by photomultipliers.

Design and

Construction

How to put an elephant into a fridge?

Benda Xu

Design and Construction

- 1 dig a experimental hall: 2015–2021;
- 2 put a detector inside: 2021–2024;
- **3** top out the water pool: 2024 expected.

JUNO collaboration since 2014

17 countries/regions, 74 institutes, >700 people.

Snapshots construction progress

Jiangmen Undergroun Neutrino Observator

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural ν

• Stainless steel frame bottom-up, acrylic sphere top-down.

Status of acrylic sphere

 Construction layer by layer. At final stage, closing the bottom this year.

Benda Xu

Design and Construction

Configuration of photo-multiplier tube array

Nucleosynthe sis and Neutrinos

Reactor u and JUNO

Design and Constructior

Natural uConclusion

size	type	quantity	detection	dark noise	transit time
			efficiency	rate/kHz	spread $1\sigma/{ m ns}$
$arphi 50{ m cm}$	micro-channel plate	15012	30%	31	7.0
	dynode	5000	29%	17	1.3
$arphi7.6\mathrm{cm}$	dynode	25600	25%	0.5	1.6
Eur.Phys.J.C82 12, 1168(2022)					

Liquid scintillator handling system

- LAB solvent, 2.5 g/L PPO, 3 mg/L bis-MSB
- Attenuation length $> 20 \,\mathrm{m}$
- U/Th $< 1 \times 10^{-15}\,\mathrm{g/g}$

up and running

Design and

Construction

filling plan developed

Solar ν

Natural ν

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural u

Conclusion

- ν is the energy distributor of supernova explosion neutrino nucleosynthesis.
- alert: pre-supernova; burst: up to ${\sim}10\,{\rm kpc};$
- diffused supernova ν background: discovery potential.

Supernova ν

Terrestial ν

neutron star

-

Jiangmen Undergroun Neutrino Observatory

Benda Xı

supernova

remnent

nebula

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Constructior

Natural ν

Si burning

core-collapse

supernova

• 1 $\bar{\nu}$ /day, 1.8–4 MeV. from radioactivity: ²³⁸U, ²³²Th, ⁴⁰K.

massive star

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural ν

Conclusior

• Understanding non-zero m_{ν} takes us beyond the standard model.

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural ν

Conclusion

- Understanding non-zero m_{ν} takes us beyond the standard model.
- ν mass ordering and precise mixing parameters motivate JUNO.

Conclusion

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural u

Conclusion

- Understanding non-zero $m_{
 u}$ takes us beyond the standard model.
- ν mass ordering and precise mixing parameters motivate JUNO.
 - see also astrophysical studies with JUNO by Yufeng Li.

Conclusion

Benda Xu

Nucleosynthe sis and Neutrinos

Reactor ν and JUNO

Design and Construction

Natural ν

Conclusion

- Understanding non-zero m_{ν} takes us beyond the standard model.
- ν mass ordering and precise mixing parameters motivate JUNO.
 - see also astrophysical studies with JUNO by Yufeng Li.
- JUNO represents state-of-the-art of liquid scintillator detector.
- Construction is to complete in 2024.

Supernova burst neutrinos

Jiangmen Undergroun Neutrino Observator

Benda Xu

backup

up to 10 kpc. supernova at the local cluster.

- supernovae observer
- pre-supernova alert

Supernova relic neutrinos

Underground Neutrino Observatory

Benda Xu

backup

- Discriminate against atmospheric neutrino background;
- 5σ discovery potential with reference model.

Solar fusion process

- Benda Xu
- backup

• JUNO is an solar neutrino detector by elastic scattering on the electrons.

predictions of solar neutrino flux

- fusion cross sections are critical inputs
 - together with the abundance, temperature and gravity-radiation presure equation constitutes the standard solar model.

Cleanness of the detector Solar sensitivity study.

Undergroun Neutrino Observator

Benda Xu

backup

$${}^8\mathrm{B} \longrightarrow {}^8\mathrm{Be}^* + \mathrm{e}^+ + \nu_\mathrm{e}$$

- capable to detect ⁸B in a model independent way.
- combination of charged and neutral on ^{13}C .

$${\rm ^{13}C}+\nu_{\rm e} \longrightarrow {\rm ^{13}N}+{\rm e^{-}}$$

• measurement of θ_{12} and $\Delta m^2_{12}.$ Astrophys. J. 965.2: 122 (2024)

pep and $\,^7\mathrm{Be}$ neutrinos

$$\label{eq:Be} \begin{split} ^7\!\mathrm{Be} + \mathrm{e}^- & \longrightarrow \ ^7\!\mathrm{Li} + \nu_\mathrm{e} \\ \mathrm{p} + \mathrm{e}^- + \mathrm{p} & \longrightarrow \ ^2\!\mathrm{H} + \nu_\mathrm{e} \end{split}$$

• better than Borexino (state of the art) in 2 years.

backup

Benda Xu

Neutrinos from CNO-cycle

$$\label{eq:constraint} \begin{array}{l} ^{13}\mathrm{N} \longrightarrow {}^{13}\mathrm{C} + \mathrm{e}^{+} + \nu_{\mathrm{e}} \\ \\ ^{15}\mathrm{O} \longrightarrow {}^{15}\mathrm{N} + \mathrm{e}^{+} + \nu_{\mathrm{e}} \\ \\ ^{17}\mathrm{F} \longrightarrow {}^{17}\mathrm{O} + \mathrm{e}^{+} + \nu_{\mathrm{e}} \end{array}$$

• better than Borexino (state of the art) in 6 years.

backup

Benda Xu