New results from the LUNA collaboration at the Bellotti Ion Beam Facility

Alessandro Compagnucci

S

G

S

The ¹⁴N(p, γ)¹⁵O and the CNO cycle

- The CNO Cycle is the main source of energy generation in massive main-sequence stars, accounts for ~1% in the Sun.
- The ¹⁴N(p,γ)¹⁵O is the slowest reaction of the CNO, controls its speed and energy production rate.

The ¹⁴N(p, γ)¹⁵O and the CNO cycle

- Solar CNO neutrino flux recently detected for the first time by Borexino (2020). → Solar metallicity probe.
- The result of Borexino disfavours "low metallicity" SSM prediction, but large uncertainties still remains. After CNO Flux itself, biggest contribution to the uncertainty budget from ¹⁴N(p,γ)¹⁵O cross section.

 Transition to the 6.79 MeV excited state of ¹⁵O: A lot of consistent measurements in the low energy region

 Transition to the ground state of ¹⁵O: Very difficult to reconcile all the measurements in a consistent picture.

 The transition to the 6.79 MeV excited state of ¹⁵O and to the ground state are fairly well know but effected to problems with their extrapolations at low energies

TABLE I. A summary of zero energy S factors for the ${}^{14}N(p, \gamma){}^{15}O$ reaction.

		Astrophysical S factor $S(0)$ (keV b)					
Year	Reference	$R/DC \rightarrow 0.00$	$R/DC \rightarrow 6.792$	$R/DC \rightarrow 6.172$	Others ^d	Total	
1987	Schröder et al. [9]	1.55 ± 0.34	1.41 ± 0.02	0.14 ± 0.05	0.1	3.20 ± 0.54	
2001	Angulo et al. ^a [10]	$0.08^{+0.13}_{-0.06}$	1.63 ± 0.17	$0.06\substack{+0.01\\-0.02}$		1.77 ± 0.20	
2003	Mukhamedzhanov et al. [16]	0.15 ± 0.07	1.40 ± 0.20	0.133 ± 0.02	0.02	1.70 ± 0.22	
2004	Formicola et al. [17]	0.25 ± 0.06	1.35 ± 0.05 (stat)	$0.06^{+0.01b}_{-0.02}$	0.04	1.7 ± 0.1 (stat)	
			\pm 0.08 (sys)	0.02		\pm 0.02 (sys)	
2005	Imbriani et al. [11]	0.25 ± 0.06	1.21 ± 0.05	0.08 ± 0.03	0.07	1.61 ± 0.08	
2005	Runkle et al. [15]	0.49 ± 0.08	1.15 ± 0.05	0.04 ± 0.01		1.68 ± 0.09	
2005	Angulo <i>et al.</i> [18]	0.25 ± 0.08	1.35 ± 0.04	0.06 ± 0.02	0.04	1.70 ± 0.07 (stat)	
						\pm 0.10 (sys)	
2006	Bemmerer et al. [13]					1.74 ± 0.14 (stat)	
						\pm 0.14 (sys) ^c	
2008	Marta <i>et al.</i> [14]	0.20 ± 0.05		0.09 ± 0.07		1.57 ± 0.13	
2010	Azuma <i>et al.</i> [19]	0.28	1.3	0.12	0.11	1.81	
2011	Adelberger et al. [3]	0.27 ± 0.05	1.18 ± 0.05	0.13 ± 0.06	0.08	1.66 ± 0.08	
2016	Li <i>et al</i> . [20]	0.42 ± 0.04 (stat)	1.29 ± 0.06 (stat)				
		$^{+0.09}_{-0.19}(sys)$	\pm 0.06 (sys)				
2018	Wagner et al. [21]	0.19 ± 0.01 (stat)	1.24 ± 0.02 (stat)				
		± 0.05 (sys)	± 0.11 (sys)				
2022	This work	$0.33^{+0.16}_{-0.08}$	1.24 ± 0.09	0.12 ± 0.04		1.69 ± 0.13	

7297

^bAdopted from Angulo and Descouvemont [10].

^cMeasured S factor at 70 keV.

Lack of recent data for the other transitions $R/DC \rightarrow 6.17, 5.24, 5.18 \dots$

TABLE I. A summary of zero energy S factors for the ${}^{14}N(p, \gamma){}^{15}O$ reaction.

		Astrophysical S factor $S(0)$ (keV b)					
Year	Reference	$R/DC \rightarrow 0.00$	$R/DC \rightarrow 6.792$	$R/DC \rightarrow 6.172$	Others ^d	Total	
1987	Schröder et al. [9]	1.55 ± 0.34	1.41 ± 0.02	0.14 ± 0.05	0.1	3.20 ± 0.54	
2001	Angulo <i>et al.</i> ^a [10]	$0.08\substack{+0.13\\-0.06}$	1.63 ± 0.17	$0.06^{+0.01}_{-0.02}$		1.77 ± 0.20	
2003	Mukhamedzhanov et al. [16]	0.15 ± 0.07	1.40 ± 0.20	0.133 ± 0.02	0.02	1.70 ± 0.22	
2004	Formicola et al. [17]	0.25 ± 0.06	1.35 ± 0.05 (stat)	$0.06^{+0.01b}_{-0.02}$	0.04	1.7 ± 0.1 (stat)	
			\pm 0.08 (sys)	0.02		\pm 0.02 (sys)	
2005	Imbriani et al. [11]	0.25 ± 0.06	1.21 ± 0.05	0.08 ± 0.03	0.07	1.61 ± 0.08	
2005	Runkle et al. [15]	0.49 ± 0.08	1.15 ± 0.05	0.04 ± 0.01		1.68 ± 0.09	
2005	Angulo <i>et al.</i> [18]	0.25 ± 0.08	1.35 ± 0.04	0.06 ± 0.02	0.04	1.70 ± 0.07 (stat)	
						\pm 0.10 (sys)	
2006	Bemmerer et al. [13]					1.74 ± 0.14 (stat)	
						$\pm 0.14 (\mathrm{sys})^{c}$	
2008	Marta <i>et al.</i> [14]	0.20 ± 0.05		0.09 ± 0.07		1.57 ± 0.13	
2010	Azuma <i>et al.</i> [19]	0.28	1.3	0.12	0.11	1.81	
2011	Adelberger et al. [3]	0.27 ± 0.05	1.18 ± 0.05	0.13 ± 0.06	0.08	1.66 ± 0.08	
2016	Li et al. [20]	0.42 ± 0.04 (stat)	1.29 ± 0.06 (stat)				
		$^{+0.09}_{-0.19}(sys)$	\pm 0.06 (sys)				
2018	Wagner et al. [21]	0.19 ± 0.01 (stat)	1.24 ± 0.02 (stat)				
		± 0.05 (sys)	± 0.11 (sys)				
2022	This work	$0.33^{+0.16}_{-0.08}$	1.24 ± 0.09	0.12 ± 0.04		1.69 ± 0.13	

7297

Frentz et al (2022)

^a*R*-matrix analysis on available data, not a measurement.

^bAdopted from Angulo and Descouvemont [10].

^cMeasured S factor at 70 keV.

Underground Nuclear Astrophysics at LUNA

The Bellotti Ion Beam Facility of LNGS

Inline Cockcroft Walton accelerator

TERMINAL VOLTAGE: 0.3 – 3.5 MV

Beam energy reproducibility: 0.01% TV or 50V

Beam energy stability: 0.001% TV / h

```
Beam current stability: < 5% / h
```


courtesy of M. Junker

H⁺ beam: 500 - 1000 μA He⁺ beam: 300 - 500 μA C⁺ beam: 100 - 150 μA C⁺⁺ beam: 50 ρμA

The ¹⁴N(p, γ)¹⁵O measurement at the Bellotti IBF

- Low background measurement over a wide-energy range, in order to address the existing issues in the extrapolations
- Angular distribution
- Measuring weaker transitions
- Pilot LUNA project at the new facility
 → Verifying the performance
 - of the accelerator
 - → Energy calibration campaign ancillary to the measurements

S

The ¹⁴N(p, γ)¹⁵O measurement at the Bellotti IBF

- Single HPGe at 55° in close geometry, excitation function.
 (June 2023)
- Three HPGe detectors, angular distribution.

55°-135°-90° + 0°-120°-90° (Oct. 2023 - under progress)

Solid Targets

- Sputtered TaN targets: Produced at LNL. Enriched (99.95%) nitrogen gas. Tested for stability up to 40+ C. Characterization via RBS and on-site using 278 keV 14N+p resonance scans.
- Implanted targets: Produced at IST, Lisbon. Tested for stability up to 15 C.

S

-

Solid Targets

- Sputtered TaN targets: Produced at LNL. Enriched (99.95%) nitrogen gas. Tested for stability up to 40+ C. Characterization via RBS and on-site using 278 keV 14N+p resonance scans.
- Implanted targets: Produced at IST, Lisbon. Tested for stability up to 15 C.

Efficiency characterization for the HPGe detector

- Efficiency calibration using ¹³⁷Cs, ⁶⁰Co and ¹⁴N+p 278 keV resonance
- Reaction data have been corrected for summing effects

$$Y_{gs} = R\left(b_{gs}\varepsilon_{fe}(E_{gs}) + \sum_{i} b_{i}\varepsilon_{fe}(E_{i}^{sec})\varepsilon_{fe}(E_{i}^{pri})\right),$$

$$Y_{i_{pri}} = Rb_{i}\varepsilon_{fe}(E_{i_{pri}})(1 - \varepsilon_{tot}(E_{i_{sec}})),$$

$$Y_{i_{sec}} = Rb_{i}\varepsilon_{fe}(E_{i_{sec}})(1 - \varepsilon_{tot}(E_{i_{pri}})),$$

$$\ln \left(\varepsilon_{fe}\right) = a + b \ln(E_{\gamma}) + c [\ln(E_{\gamma})]^2,$$
$$\varepsilon_{fe}(d) = \frac{1 - e^{\frac{d+d_0}{1+\beta\sqrt{E_{\gamma}}}}}{(d+d_0)^2}.$$

Preliminary results

- Excitation function measurement (June 2023):
 - 0.25-1.3 MeV in 50 keV steps,
 - 55° HPGe at 5 cm from target,
 - Total charge collected: 38 C (up to 300 μA).
- Angular distribution measurement (October 2023 - February 2024)
 - O 0.4 1.1 MeV in 100 keV steps
 - 3 HPGe detectors 15 cm from target
 - Total charge collected: **150** C

08/09/2024

08/09/2024

S

First new measurement since Schroeder et al (1987) in this energy range!

S

08/09/2024

S-factor: R/DC \rightarrow 5.24/5.18 MeV

First new measurement since Schroeder et al (1987) in this energy range!

GS SI

Angular distributions

 angular distributions fit for a1 and a2 for the R/DC→ 6.79 MeV and ground state, down to 400 keV.

Conclusion and Outlook

- Cross section data for the astrophysical key reaction $^{14}N(p,\gamma)^{15}O$ have been collected in the energy range 0.25 1.3 MeV.
- Angular distributions have been measured for the two most important transition R/DC→ 6.79 MeV and g.s. down to 400 keV.
- We measured most of the weaker transitions, many of them not observed by previous authors of recent publications.
- Data taking still underway, to be completed in 2024. Multi-channel R-matrix analysis started.
- New low energy measurement has also started @ LUNA-400 with the SOCIAL project.

Thank you for your attention!

The LUNA collaboration

luna.lngs.infn.it

