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What are short-range correlations?

Two nucleon wave function is not a product! C is the correlation function 

ρ(r, r′ ) = (1 + C( |r − r′ | ))ρ(r)ρ(r′ )
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Two body density ρ(r, r′ ) = ⟨Ψ |∑
j<k

[δ(r − rj)δ(r′ − rk) + δ(r − rk)δ(r′ − rj)] |Ψ⟩

Probability of finding one particle at j and another at k

Measure in momentum space



Implications of short-range correlations

• Neutrino-less double beta decay matrix elements 
Kortelainen:2007rh,Kortelainen:2007mn,Menendez:2008jp,Simkovic:2009pp,
Benhar:2014cka,Cruz-Torres:2017sjy,Wang:2019hjy

• Nuclear charge radii: Miller:2018mfb

• Nuclear symmetry energy and neutron star properties: Li:2018lpy

• Internal structure of nucleons in nuclei 
Hen:2013oha,Hen:2016kwk,Schmookler:2019nvf

Intent here: explain from very beginning

C(r)  is used in computing the following and more:
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What	holds	the	nucleus	together	

“What holds the nucleus of the atom together? In the past quarter 
century physicists have devoted a huge amount of experimentation 
and mental labor to this problem - probably more man-hours than 
have been given to any other scientific question in the history of 

mankind.” – Hans Bethe, Scientific American 1953.
 
 

 Theory: Discovery vs Precision phases

Discovery- there is a puzzle  to be solved, main mechanisms to be identified.


1953 -discovery of binding based on nucleon-nucleon interaction in the medium

1975 - main pieces identified, corrections needed


Precision - 1980’s relativistic effects put in 

late 1990’s -2000 chiral eft 


2000- now soft interactions, similarity renormalization 

Sometimes pursuit of precision obscures the basic elements and leads to confusion


Experiment re short-range correlations -still in discovery phase, but moving rapidly 


?
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Short distance-high momentum relation1

Relating high momentum and short-distance features.

Bethe (PhysRev.103.1353) “Indeed, it is well established that the forces between two nucleons are of short

range, and of very great strength” and “there are strong arguments to show that the two-body forces continue

to exist inside a complex nucleus ”.

Brueckner, Eden, & Francis, (PhysRev.98.1445) argued that nuclear wave function contains nucleons with

a significant probability to have high momentum: The (p, d) pick up reaction with 95 MeV protons. The

neutron in the nucleus must have high momentum comparable to that of the proton, about 420 MeV/c, so

that combination with the incident proton allows the deuteron to emerge from the nucleus. The only way a

bound neutron could acquire such momentum is via interactions with another nearby nucleon.

Bethe continued “All these processes show that the ’potential’ is fluctuating violently from point to point in

the nucleus, which is compatible with the assumption that two-body forces continue to act inside the nucleus

without much modificcation.” The idea of two strongly interacting nucleons, acting independently of the other

nucleons (the independent pair approximation (IPA)) is the basis of Bruckner theory (PhysRev.97.1353) which

provided a fundamental explanation of how the shell model of nuclei arises from fundamental interactions of

nucleons.

Modern implementation IPA: generalized contact formalism (GCF) (Cruz-Torres:2019fum.) Strong interaction

of closely separated nucleons, weaker interaction with the remaining A�2 system ! factorized approximation

for (small-r), (large-k) components of the nuclear wave function. (Weiss:2016obx)

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (k) = CNN,↵

A ⇥ |'↵
NN (k)|2

Equivalence between short distance and high momentum: same contact terms
CNN,↵

A for both densities, established by extracting the contacts separately
from the coordinate- and momentum-space nuclear wave functions.

If p has high momentum, n in nucleus must have high momentum to

make high-momentum deuteron

5
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pp scattering at high energy- strong repulsive core
Symmetric about 90 deg-identity of particles flat 

except for forward peak due to coulomb

Isotropy due to only s-wave scattering ruled out, high energy

Interference between S&D gives flatness IF  


Potential is hard repulsive core  at short distance & 

long range attraction. As energy increases  


sign of s-wave changes from + to -. 


Jastrow PR 81, 165(1951)

166 ROB E RT JASTROW

account for the isotropic distribution observed in p-p
scattering at high energies while maintaining the
anisotropy in e-p scattering at comparable energies.

II. THE INTERACTION

A charge-independent interaction is assumed, the
differences in I pa-nd p-p scattering then being only
those determined by the exclusion principle in (1a) and
(1b), namely, the domination of 0» over 0 „~by a factor
of four and the elimination in the former of the odd
singlet and even triplet states.
We adopt an interaction characterized. in the singlet

states by a short-range repulsion and a surrounding
attractive well, the parameters in the combination
being chosen for agreement with low energy scattering
constants. ' The attractive part of the Geld is perhaps
to be associated with the x-meson and the short-range
repulsion with a heavier particle.
The small magnitude of the triplet effective range

(1.7X10 " cm) precludes the possibility of a triplet
repulsion larger than 0.2X10 " cm. Since the effects
of a core of this size are unimportant at the energies
considered, we may simplify the interaction by taking
the triplet radius of repulsion to be zero.

The assumption of a spin-dependent core radius is
somewhat arti6cial. However, the absence of the core
in the triplet states may also be considered as arising
from the superposition of an attractive well of spin-
dependent depth on a repulsive interaction constant in
all states (Fig. 1).
The triplet interaction is assumed to be the same as

that Gtted by Christian and Hart' to the deuteron
constants and low energy rl, pscatt-ering parameters,
except for the addition of a weak tensor force in the
odd states.
The repulsive field is represented by a hard sphere

for convenience in calculation. An exponential radial
dependence is chosen for the attractive well since the S
phase may then be expressed analytically. ' The inter-
action then takes the form:

Singlet: V= ~, r&ro,.

r—roy (1+I'.yV= Vo. exp/ — /) [, r&ro.
r, l E 2 ) (2)

Triplet: V= Iu+(1 u)P—
+Lb+ (1—b)P,j~S„}Vo, exp(—r/r, ).

If one chooses ro——0.60X10 " cm, the remaining
parameters are then fixed at the following values by
the deuteron constants and by n-p and p-p scattering
at various energies:

ro ——0.60X10 "cm
r,=0.40X10 "cm
r&=0.75X10 "cm
8=0.50

V0,=375 Mev'
Vo&= 69 Mev

1.84
b= 0.30

v+v"'0 + v(&l
0

Fxo. 1. Composition of the potential from a repulsion constant
in all states and a spin-dependent attractive well. Vo=repulsion
potential, Vs= triplet attraction, V'=singlet attraction.

who conclude that it is possible by means of a singular interaction
of this type to represent qualitatively the n-p and p-p cross
sections on a charge-independent basis. Some consequences of
spin-orbit couplin, g have also been considered by Blanchard,
Avery, and Sachs I Phys. Rev. 78, 292 (1950)j.

A similar type of interaction has been considered by ¹ M.
Kroll in connection with p-p scattering. P. O. Olsson has examined
the possibility of introducing a repulsion into the I-p interaction,
as have also 0.Par@en and L. Schj8 /Phys. Rev. 74, 1564 {1948)g.

III. P-P SCATTERING

A. Qualitative Effect of the Core
The introduction of a short-range singlet repulsion

has the following effect on p-p scattering. When energies
are reached comparable with or greater than the depth
of the surrounding attractive well, the S wave will be
affected less by the well than by the inner core, and
the sign of the S phase shift will change from positive
to negative in this energy region. States of higher
angular momentum are, however, affected more by the
outer or attractive region of the potential, and the
corresponding phase shifts will remain positive until
energies are reached which are greater than that at
which the S phase changes sign. Thus, there will

R. S. Christian and E.W. Hart, Phys. Rev. 77, 441 (1950}.
'The exponential well possesses this advantage over the

Yukawa well. With regard to the possibility of other radial forms,
the only important requirement is that the tail of the well be
approximately as long as that of the exponential or Yukawa wells.' The magnitude of the singlet well depth arises from the narrow
range employed. Although large in comparison with the custom-
arily quoted well depths for square wells without repulsion, the
figure of 375 Mev appears to be more reasonable when compared
with the singlet and triplet depths of 100 and 160 Mev, respec-
tively, which occur when the exponential well without core is used.

Scattering Theory 2 (last revised: September 28, 2014) 5–4

phase shifts from a local potential, we can use the Variable Phase Approach (VPA) to analyze what
happens. As we integrate from 0 to 1, every part of the potential contributes, but the weighting of
each region depends on the asymptotic momentum/energy. The consequence (see exercises) is that
a local potential that is attractive in the medium- and long-range must have a strong short-range
repulsion for the phase shift to change sign at higher energy. On the other hand, this potential is
not unique. We can make a unitary transformation to a potential that predicts the same phase
shifts but which does not have a short-range repulsion. In this case, the potential is non-local and
therefore velocity dependent, which means it can be attractive at low momentum and repulsive at
high momentum. We’ll come back to this later when we examine renormalization group methods.

Side note: the large scattering length in both spin channels leads to an approximate low-energy
symmetry:

SU(2)isospin ⌦ SU(2)spin = SU(4) , (7)

which is called the Wigner symmetry. The spin-orbit force breaks the symmetry between spin-up
and spin-down, which breaks the Wigner symmetry in nuclei. We’ll see later how this symmetry is
manifested in the pionless e↵ective field theory for nuclei.

Figure 2: Selected phase shifts. From arXiv:1110.5116.

In Fig. 2, a selection of phase shifts are plotted as a function of laboratory energy until well above
the pion production threshold. Above this threshold, there is no longer only elastic scattering, so the
real phase shift does not tell the entire story. However, below this threshold we can deduce various
properties of the NN potential (or see how given properties manifest themselves in the phase shifts).
If we compare the 1S0, 1D2, and 1G4 phase shifts, we see the impact of the centrifugal barrier. In
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np scattering

Symmetry about 90   
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Deuteron and One Pion Exchange Potential 
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DEUTERON PROPERTIES AND OPE  53 

FIG. 3.6. The deuteron wave functions  u(r) and q/(r) from a modern NN 
potential (the Paris potential) compared to the wave functions generated by OPE 
as described in the text. The wave functions are normalized so that Ci(r) —* e' 

for r —> 00. (From Ericson and Rosa-Clot 1985.) 

with far more sophisticated approaches (see Fig. 3.6). The d-wave 
function is also described in qualitative agreement with such approaches 
although it is too large inside of 1.5 fm. This reflects the fact the OPE 
tensor force is too strong at short distances. The same conclusion is 
drawn from a comparison with the empirical deuteron wave function in 
Fig. 3.6. In the short-range region r :5-0.5 fm, both the s- and d-wave 
functions are model-dependent but small. Note that the procedure just 
described is valid even in the presence of the singular 7.-3  interaction. 

Let us now assume that the OPE wave functions obtained in the 
procedure above describe the real deuteron. It is then straightforward to 
determine the deuteron effective range parameter p defined as 

p = 2f dr[e -2ar - it-2(r) _ IT,2(r)],  (3.38) 
o 

where û(r)  and li)(r) are defined in eqns (3.31) and (3.32). From the 
normalization of the wave function it follows that the asymptotic s-state 
normalization constant is 

ar 
feq = 

1 — œp
.  (3.39) 

With the coupling constant f 2/4.7 = 0.078 one finds the OPE effective 

CC 

OPEP explains deuteron wave function for distances down to 
about 0.5 fm

3
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FIG. 1 Feynman diagrams describing direct (upper panel) and ex-
change (lower panel) contributions to one-pion-exchange between
two nucleons. The corresponding amplitude is given by Eq. (6).

The coordinate-space potential is obtained from Fourier
transformation according to

vOPE(r) = �
 

f
m⇡

!
(⌧1 · ⌧2) (�1 · r) (�2 · r) (14)

⇥
Z

d3k
(2⇡)3

1
(|k|2 + m2

⇡ )
e�ik·r , (15)

where
Z

d3k
(2⇡)3

1
( |k|2 + m2

⇡ )
e�ik·r =

1
4⇡

e�m⇡r

r

=
1

4⇡
y⇡ (r) . (16)

The gradients appearing in Eq. (14) can be readily evaluated
exploiting the relation

(�r2 + m2
⇡ ) y⇡ (r) = 4⇡�(r) , (17)

and rewriting

(�1 · r) (�2 · r)y⇡ (r)

=

"
(�1 · r) (�2 · r) � 1

3
(�1 · �2) r2

#
y⇡ (r)

(18)

+
1
3

(�1 · �2) r2 y⇡ (r) .

The �-function contribution to r2y⇡ (r), arising from Eq.(17),
does not appear in the first term, yielding

"
(�1 · r) (�2 · r) � 1

3
(�1 · �2)r2

#
y⇡ (r) (19)

=

"
(�1 · r̂) (�2 · r̂) � 1

3
(�1 · �2)

#

⇥
 
m2

⇡ +
3m⇡

r
+

3
r2

!
y⇡ (r),

where r̂ = r/|r|. In the second term, it can be replaced with
m2

⇡ y⇡ (r) � 4⇡ �(r) using Eq. (17).

Carrying out the calculation of the derivatives in Eq. (14)
we finally find

vOPE(r) =
1
3

1
4⇡

f 2 m⇡ (⌧1 · ⌧2)


T⇡ (r)S12

+

 
Y⇡ (r) � 4⇡

m3
⇡

�(r)
!

(�1 · �2)
#
, (20)

with

Y⇡ (r) =
e�m⇡r

m⇡r
, (21)

and

T⇡ (r) =
 
1 +

3
m⇡r

+
3

m2
⇡r2

!
Y⇡ (r) . (22)

Note that due to the presence of a contribution involving the
operator

S12 =
3
r2 (�1 · r)(�2 · r) � (�1 · �2) , (23)

reminiscent of the operator describing the interaction between
two magnetic dipoles, the above potential is not spherically
symmetric.

The above potential provides a good description of the long
range part (|r| > 1.5 fm) of the NN interaction, as shown
by the fit to the NN scattering phase shifts in states of high
angular momentum. Note that in these states, due to the strong
centrifugal barrier, the probability of finding the two nucleons
at small relative distances becomes negligibly small.

Small r :OPE ~1/r3


Singular 

Longest ranged component of NN force

VOPE(r) =
1
3

f 2

4π
mπτ1 ⋅ τ2

e−mπr

mπr
[(1 +

3
mπr

+
3

m2
πr2

)S12 + σ1 ⋅ σ2]

mπ ≈ 0.7fm−1, f 2/4π ≈ 1 Ericson and Rosa-Clot ARNPS 35,271 (1985) 

τ1 ⋅ τ2 = − 3(T = 0) or + 1(T = 1)

Gives np dominance8



Summary of NN scattering-basic
• Tensor force due to OPE very important for 

deuteron and np scattering

• pp scattering can be described by hard core plus 
longer-ranged attractive  force

• Implication-these pair-wise forces bind nuclei -there 
must be nucleon-nucleon correlations- nucleons do 
not move independently in the nucleus

NN forces-Life is way more complicated

9



• 1950-1980 Exchange of omega (vector) meson 
gives repulsion like photon exchange between like 
charges

• 1980-1990  Pauli principle limits number of quarks 
at the same place

• 1990- Effective field theory - mechanism is high 
energy, unknowable use a low-energy constant

Origin of Core

Opinion  and one theme of this talk-

giving up  knowledge  of the short-distance physics is a mistake, to understand nuclei 

one needs to know all scales
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First nuclear phenomenology:
Independent particle (Shell model) 

Nucleon moves in average potential provided by other nucleons

U(r) ∼ ∫ d3r′ VNN(r − r′ )ρ(r′ )
Single particle potential

Nucleon-nucleon potential

Nuclear density
Schematic

LE TTE RS TO THE E D I TOR

since a rigid or liquid nucleus as a whole would have no orbital
momentum in its lowest state.
The scheme proposed by Mayer follows exactly the order

in a potential well. It achieves the breaks at the correct places
by the assumption of a very strong spin-orbit coupling at high
angular momentum values.
A summary of the three schemes is given in Table I. All

three schemes give, of course, the empirical shell numbers and
a statistical correlation with observed spins and moments. A
decision between the schemes may be hoped for through dis-
cussion of new data which may tend to tip the scales in a
definite direction, or by more theoretical work. Among the
latter would be a refined calculation of the effects of the
Coulomb forces on the density distribution in a nucleus,
improved treatment of the many body problem, and better
understanding of the spin-orbit coupling in nuclei.
It should be emphasized that the existence and the charac-

teristics of nuclear shell structure have become now much more
clearly established than formerly in spite of the ambiguities in
their interpretation. Particularly there is a definite correlation
between spin and shell structure. This does not mean neces-
sarily that the individual particle model is better than hitherto
assumed. The shell structure in nuclei, is, however, so pro-
nounced an effect that one may hope to obtain an interpreta-
tion even on basis of such a crude approximation as the
individual particle model.

TABLE I.

Osc. Square Spect.
No. well term

0 is is

3d

Spin
term

1sl/g

1p 1/2

1ps/2

ids/2

1dg/g

2sl/e

No. of
states Shells

12

Total
No.

20

with spin 3/2 in stead of the expected d~/2, and2~ Mn" with 5j2
instead of the expected f~/2, are the only violations.
Table II lists the known spins and orbital assignments from

magnetic moments' when these are known and unambiguous,
for the even-odd nuclei up to 83. Beyond 83 the data is
limited and no exceptions to the assignment appear.
Up to Z or %=20, the assignment is the same as that of

Feenberg and Nordheim. At the beginning of the next shell,
f&/2 levels occur at 21 and 23, as they should. At 28 the f7/2
levels should be filled, and no spins of 7/2 are encountered
any more in this shell. This subshell may contribute to the
stability of Ca". If the g9/2 level did not cross the P»2 or f5/2

*This letter has been. written on request by the editor of the Physica
Review, who received the papers, reference 1 and 2, by the same mai!.

1 Eugene Feenberg and Kenyon C. Hammack, Phys. Rev. 75, 1877 (1949).
g L. W. Nordheim, Phys. Rev. 75, 1894 (1949).' Maria G. Mayer, Phys. Rev. 75, 1969 (1949).

On Closed Shells in Nuclei. II
MARIA GOEPPERT MAYER

Argonne cVational I.aboralory and Department of Physics,
Unil/ersity of Chicago, Chicago, Illinois

February 4, 1949
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'HE spins and magnetic moments of the even-odd nuclei
have been used by Feenberg" and Nordheim' to deter-

mine the angular momentum of the eigenfunction of the odd
particle. The tabulations given by them indicate that spin
orbit coupling favors the state of higher total angular mo-
mentum. If strong spin-orbit coupling, increasing with angular
momentum, is assumed, a level assignment different from
either Feenberg or Nordheim is obtained. This assignment
encounters a very few contradictions with experimental facts
and requires no major crossing of the levels from those of a
square well potential. The magic numbers 50, 82, and 126
occur at the place of the spin-orbit splitting of levels of high
angular momentum.
Table I contains in column two, in order of decreasing

binding energy, the levels of the square well potential. The
quantum number gi's the number of radial nodes. Two levels
of the same quantum number cannot cross for any type of
potential well, except due to spin-orbit splitting. No evidence
of any crossing is found. Column three contains the usual
spectroscopic designation of the levels, as used by Nordheim
and Feenberg. Column one groups together those levels which
are degenerate for a three-dimensiona1 isotropic oscillator
potential. A well with rounded corners will have a behavior in
between these two poten, tials. The shell grouping is given in
column five, with the numbers of particles per shell and the
total number of particles up to and including each shell in
column six and seven, respectively.
Within each shell the levels may be expected to be close in

energy, and not necessarily in the order of the table, although
the order of levels of the same orbital angular momentum and
different spin should be maintained. Two exceptions, IINa"

6h

1hi 1/2

ihg/g

12,

10'

,3p

2fs/g

3 ps/2

3p1/g 2

14j 126

~2g 6g

,4s 4s

levels, the first spin of 9j2 should occur at 41, which is indeed
the case. Three nuclei with N or 2=49 have g9/2 orbits. No s
or d levels should occur in this shell and there is no evidence
for any.
The only exception to the proposed assignment in this

shell is the spin 5j2 instead of 7j2 for Mn's, and the fact that
the magnetic moment of »Co" indicates a g7/2 orbit instead
of the expected f~/2.
In the next shell two exceptions to the assignment occur.

The spin of 1j2 for Mo'5 with 53 would be a violation, but is
experimentally doubtful. The magnetic moment of Eu'"
indicates f5/2 instead of the predicted dq/2. No hii/~ levels
appear. It seems that these levels are filled in pairs only,
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particle. The tabulations given by them indicate that spin
orbit coupling favors the state of higher total angular mo-
mentum. If strong spin-orbit coupling, increasing with angular
momentum, is assumed, a level assignment different from
either Feenberg or Nordheim is obtained. This assignment
encounters a very few contradictions with experimental facts
and requires no major crossing of the levels from those of a
square well potential. The magic numbers 50, 82, and 126
occur at the place of the spin-orbit splitting of levels of high
angular momentum.
Table I contains in column two, in order of decreasing

binding energy, the levels of the square well potential. The
quantum number gi's the number of radial nodes. Two levels
of the same quantum number cannot cross for any type of
potential well, except due to spin-orbit splitting. No evidence
of any crossing is found. Column three contains the usual
spectroscopic designation of the levels, as used by Nordheim
and Feenberg. Column one groups together those levels which
are degenerate for a three-dimensiona1 isotropic oscillator
potential. A well with rounded corners will have a behavior in
between these two poten, tials. The shell grouping is given in
column five, with the numbers of particles per shell and the
total number of particles up to and including each shell in
column six and seven, respectively.
Within each shell the levels may be expected to be close in

energy, and not necessarily in the order of the table, although
the order of levels of the same orbital angular momentum and
different spin should be maintained. Two exceptions, IINa"
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levels, the first spin of 9j2 should occur at 41, which is indeed
the case. Three nuclei with N or 2=49 have g9/2 orbits. No s
or d levels should occur in this shell and there is no evidence
for any.
The only exception to the proposed assignment in this

shell is the spin 5j2 instead of 7j2 for Mn's, and the fact that
the magnetic moment of »Co" indicates a g7/2 orbit instead
of the expected f~/2.
In the next shell two exceptions to the assignment occur.

The spin of 1j2 for Mo'5 with 53 would be a violation, but is
experimentally doubtful. The magnetic moment of Eu'"
indicates f5/2 instead of the predicted dq/2. No hii/~ levels
appear. It seems that these levels are filled in pairs only,
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An extreme one particle model of the nucleus is proposed. The model is based on the succession of energy
levels of a single particle in a potential between that of a three-dimensional harmonic oscillator and a
square well. {1)Strong spin orbit coupling leading to inverted doublets is assumed. {2) An even number
of identical nucleons are assumed to couple to zero angular momentum, and, {3) an odd number to the
angular momentum of the single odd particle. {4)A {negative) pairing energy, increasing with the j value of
the orbit is assumed. With these four assumptions all but 2 of the 64 known spins of odd nuclei are satis-
factorily explained, and all but 1 of the 46 known magnetic moments. The two spin discrepancies are
probably due to failure of rule {3).The magnetic moments of the Gve known odd-odd nuclei are also in
agreement with the model. The existence, and region in the periodic table, of nuclear isomerism is correctly
predicted.

"UCLEI containing 2, 8, 20, 28, 50, 82 or 126
neutrons or protons are particularly stable. '

These closed shells have been explained in diBerent
ways. "It has also been pointed out that the "magic
numbers" can be explained on the basis of a single
particle picture with the assumption of strong spin-orbit
coupling. 4 The detailed evidence supporting this point
of view mill be discussed in this paper.

I. THE SHELLS

The single particle orbits for the neutrons and protons
in a nucleus are determined by a potential energy which
has a shape somewhat between that of a square well
and a three-dimensional isotropic oscillator. The level
order for these two potentials is closely related. In
Table I the order of the levels is given. The 6rst line
contains the oscillator quantum number. The levels
which would be degenerate for the. oscillator are grouped
together. The eigenfunctions of any such group have
the same parity. The order of levels in each group is that
calculated for the square well. The major quantum
number in the second line counts the number of spherical
nodes. The third line contains the number of neutrons
or protons which completely 611 all states up to each
oscillator level. For the square-well potential, the
grouping of energy levels indicated above exists only
for the low lying eigenfunctions and explains the
stability of the numbers 2, 8, and 20. Beyond n= 2, the
grouping is no longer pronounced; 3s and 1h, and also

TAM.E I. Order of energy levels for a potential somewhat between
that of a square well and of a three-dimensional isotropic

osci0ator.
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3p and 1i, have approximately the same energy in a
square well calculation.
The grouping of oscillator levels does not explain the

occurrence of the higher magic numbers; it is apparent
that their stability must be due to a diferent cause.
Assume that there exists a strong spin-orbit coupling
such that the orbits with higher total angular momenta,
j=l+~, have a higher binding energy. Since this
coupling should depend on the orbital angular mo-
mentum, I, and be higher for large / values, it is greatest
for the 6rst level in each of the oscillator groups. For
this level, the state with j=l+-, will be lowered in
energy towards the group with lower n, the state with
j=l——,' raised, so that a gap occurs at this point. Table
II contains the order of levels obtained from those of
the square well by spin-orbit coupling. It is seen that
the shells so obtained correspond exactly to the magic
numbers.
In the middle of the shell, spin-orbit coupling may

give rise to crossing of some levels.

II. ASSUMPTIONS
As will be shown in the detailed discussion, the fol-

lowing assumptions are adequate to explain the ob-
served facts in all but a very few exceptional cases:

(1) The succession of energies of single particle orbits
is that of a square well with strong spin orbit coupling
giving rise to inverted doublets.
(1a) For given f, the level j=l+ ~ has invariably lower

energy and will be 6lled before that for j=l—-,'.
(1b) Pairs of spin levels within one shell, which arise

from adjacent orbital levels in the square well in such
a way that spin-orbit coupling tends to bring their
energy closer together can, and very often will, cross.
Examples»«3/2 and ~1/2 f5/2 pa/2 pl/2 g9/2 g7/2

/f$/2 sg/2 k/1/g pl/2 A)3 /T2hese level pairs may cross to
have their energy order reversed from that of Table II.
(2) An even number of identical nucleons in any

orbit with total angular momentum quantum number
j will always couple to give a spin zero and no con-
tribution to the magnetic moment.
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that their stability must be due to a diferent cause.
Assume that there exists a strong spin-orbit coupling
such that the orbits with higher total angular momenta,
j=l+~, have a higher binding energy. Since this
coupling should depend on the orbital angular mo-
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for the 6rst level in each of the oscillator groups. For
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II contains the order of levels obtained from those of
the square well by spin-orbit coupling. It is seen that
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give rise to crossing of some levels.
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As will be shown in the detailed discussion, the fol-

lowing assumptions are adequate to explain the ob-
served facts in all but a very few exceptional cases:

(1) The succession of energies of single particle orbits
is that of a square well with strong spin orbit coupling
giving rise to inverted doublets.
(1a) For given f, the level j=l+ ~ has invariably lower

energy and will be 6lled before that for j=l—-,'.
(1b) Pairs of spin levels within one shell, which arise

from adjacent orbital levels in the square well in such
a way that spin-orbit coupling tends to bring their
energy closer together can, and very often will, cross.
Examples»«3/2 and ~1/2 f5/2 pa/2 pl/2 g9/2 g7/2

/f$/2 sg/2 k/1/g pl/2 A)3 /T2hese level pairs may cross to
have their energy order reversed from that of Table II.
(2) An even number of identical nucleons in any

orbit with total angular momentum quantum number
j will always couple to give a spin zero and no con-
tribution to the magnetic moment.

PR 75, 1969 (1949)

~kF	

   Nucleon momentum distribution
But no    p + A → d + X
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• There is no fundamental central potential as in 
atomic physics- potential is strong and short-
ranged. Why does shell model work?

• U is first-order in V, V is strong. How can divergent 
series give physical results?

• ….

First nuclear phenomenology:
Independent particle (Shell model)

Problems 

How to fix the problems
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Scattering of 2 bound nucleons
T(E) = V + V

1
E − H0 + iϵ

T(E), E > 0 Free

Bound

Fermi energy

In medium E becomes -B, <0

Scattering -is Pauli Blocked


Resulting matrix is called G (gasp)

G(B) = V + V
Q

−(B + H0)
G(B), B > 0

Denominator is negative definite asymptotic behavior of wave function ∼ e− Br /r

G(B)ϕ = Vψ, no plane wave term

V is singular, G(B) is not singular

Example Fetter & Walecka 1S0   potential
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(pq I
o I rs&

= p„*(r,)p,*(ro)v»p„(r, )4, (r,) dr, dr„

(rl Ulr) fs lr) o=s.lr.*)s ~

(2. 10)

(2.11)

aras+asar=0s ar as +as ar =0s aras +as ar mrs

(2. 12)
The a's are Fermion creation and destruction operators
that satisfy the anticommutation relations (2.12);
a, destroys a particle in the one-particle state s and
a,~ creates a particle in this state. From now on, the
one-particle state @, will be referred to simply as the
state s. The matrix elements are de6ned by Eqs.
(2.10) and (2. 11).The matrix element of v is calcu-
lated between pairs of two-particle wave functions,
each of which is a simple product of one-particle func-
tions; (p I

U ) q) is a matrix element of the one-particle
potential U. Note that in the matrix element (2.10), p
is associated with r in the sense that p~ and p„have the
same argument, and q is similarly associated with s.
The summations in (2.9) run over all one-particle
states, not over particles. It is clear that (pq I

o I rs) =
(qp I

n I sr), and it is understood that only one of these
two identical terms is included in the sum. This is ex-
pressed by saying that the sum runs only over distinct
matrix elements.

The A one-particle states of lowest energy make up
what is called the Fermi sea, and all states of higher
energy are said to be above the Fermi sea.
The exact ground state P satisfies

(2.6)
and it is the eigenvalue 8 that we want to calculate.
Perturbation theory gives a formal expansion for 8,
which, through third order in H», is

g= go+ (C'o
I » I C'o)+ (C'o I Hi(go—Ho) '~% I 4'o)

+ (C'o
I Hi(go—Ho) PHi(go—Ho) IHi I sI»)

—(~o I Hi I Co&(Co I
Hi(g —Ho)-'&Hi I

Co&"

(2 't)

z—=1—
I c»)(c» I. (2.8)

The operator I' projects oB Cp and ensures that C'p

does not occur as an intermediate state in any of the
matrix elements.
The matrix elements in this formula involve many-

body operators and many-body wave functions. In
order to actually evaluate them, it is helpful to write
the perturbation 8» in the second quantized form

»= Z(pv I
o

I rs)a'a'a a Z(p I
U—

I v&a."ao
pqr8

(2.9)

Now consider the second-order term in the perturba-
tion series (2.7). We start with Co, apply Hi to get a
new state, divide by (go—Hp), and apply Hi again in
order to get back to Cp. Let us consider a single term in
H» and see what it does to C'p. We take the term
(ab I

v
I
tm&as~abta~a~, and we use the convention that

indices a, b, c, ~ ~ ., at the beginning of the alphabet
label states above the Fermi sea, while k, 1, m, e, ~ ~

label states in the Fermi sea, and states p, q, r, s, ~ ~ ~,
could be either in the sea or above it.
What does (ab I v I

tm )a,tabta„a& do to C»? It destroys
particles in states 1 and m in the Fermi sea and creates
particles in states u and b above the Fermi sea. Thus it
produces a new Slater determinant which diGers from
4'p by having two vacancies in the Fermi sea and two
occupied states above the Fermi sea. Vacancies in the
Fermi sea are called holes, and occupied states above the
Fermi sea are called particles. So C'p is the Slater deter-
minant with no particles and no holes, and any other
Slater determinant can be specified by stating which
particles and which holes are present. Kith this in
mind we can represent the action of this operator on C p

by means of the diagram shown in Fig. 2.
In the matrix element we work from right to left;

in the diagrams, this corresponds to the upward direc-
tion. The interpretation of the diagram is that we
started with the state Cp with no particles and no holes
(represented by the blank space below the diagram),
then applied the operator (ab I

e I lm)a, ~abaca aq and
obtained a new Slater determinant. This new Slater
determinant has particles in a and b (represented by the
upward directed lines) and it has holes in / and m
(represented by the downward directed lines). This
is an example of Rule 1 in Table I, the list of rules for
diagrams.
The dashed line stands for the matrix element

(ab I
n

I bg). Note that the lines labeled a and b (which
are directed away from the vertex) appear on the left-
hand side of the matrix element, while lines 1 and m
(which are directed towards the vertex) appear on the
right-hand side of the matrix element, This is in accord
with Rule 2: The u~'s are associated with the left-hand
side of the matrix element and always correspond to
outgoing lines, and the a's are associated with the
right-hand side of the matrix element and always cor-
respond to incoming lines. Also, a and l meet at the
same end of the dashed line because the matrix element
associates a with /, and similarly for ns and b.
The new Slater determinant was obtained by applying

one term of H» to Cp. The next step is to operate on
this new Slater determinant with (go—H~) '. This

FIG. 2. Diagrammatic representation of

(gb ) o ) tm)a +os+a„ag ~
Cs).

r kFr

rψ(r)
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Derived Shell Model From Strong Int’s

U(r) ∼ ∫ d3r′ VNN(r − r′ )ρ(r′ ) Non-convergent

U(r) ∼ ∫ d3r′ GNN(r − r′ )ρ(r′ )

Single particle potential

Mean field 

Convergent

First approximation to the nuclear wave function     

= anti-symmetrized product of single particle (sp) wave functions defined by the potential U


Full  nuclear wave function:

|ΦA⟩

Two nucleons below Fermi sea kicked above the Fermi sea 2p-2h excitations
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G

l,m are single particle states below Fermi sea (holes)

a,b are single-particle states above Fermi sea (particles)

|Ψ⟩A = |Φ⟩A +
QA

EA − H0 ∑
i<j

Gij |Φ⟩A

NN correlations

Products of sp wave 


functions not sufficient

Explains why nucleons not completely in shell-model orbitals
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Consequences of 
|Ψ⟩A = |Φ⟩A +

QA

EA − H0 ∑
i<j

Gij |Φ⟩A

NN correlations

Products of sp wave 


functions not sufficient

~kF	

15

Responsible for production of deuterons!

Basics solved, end of discovery phase but issues remained
/22



Understanding G and nuclear binding -Chiral 
dynamics of Kaiser et al nucl-th/0105057

• Momentum-space cutoff   regularizes divergent parts of chiral two-
pion exchange

• Isospin symmetric and asymmetric nuclear matter given in terms of 
one parameter  

•   characterizes short-distance physics

• Pion exchange plus   gives basics of nuclear physics

Λ

Λ

Λ

Λ

Previously we saw OPEP dominates the deuteron wave function

Kaiser et al showed that OPEP dominates nuclear binding

G(B) ≈ VOPEP + VOPEP
Q

−(B + H0)
VOPEP ≈ VOPEP + VT

Q
−(B + H0)

VT

Dominance of  tensor force VT.  See also  Appendix of Hen et al RMP arXiv:1611.09748


Gives np dominance 
16



Reason for np dominance 

17

one pion exchange between n and p. Strong in S=1,T=0 

huge 
from  
S. eq.

⇡

 (k) ⇠ 1

k2

300MeV/c < k < 500MeV/c

Supports highmomentum transfer

Not e↵ective range

Two nucleons are 
stuck/struck  together

Same mechanism as Kaiser et al that holds nucleus together



Long range effects are influenced 
by short-range interactions 

18

PLB 793,360 (2019)  

Nuclear charge radii ̂r2 =

X

⟨A | ̂r2 |A⟩ = +
^+ +

single particle correlations correlations



Can SRC be measured?
• Why ask? Everyone knows wave functions can’t be measured and src are part of wave function

Matrix elements are measured. Normal procedure:

use wave functions to compute measured matrix elements and


verify wave functions.  


• Furnstahl & Schwenk J. Phys. G37,064004(2010) -“systematic framework needed to address 
questions such as whether short-range correlations are important for nuclear structure

• Many examples show that momentum-space wave functions are closely connected to cross 
sections: photoabsoprtion cross section on hydrogen proportional to square of wave function. 
Modern version: Angle resolved photoemission spectroscopy, gives electron wave functions in 
solids RMP75,473.

So experience teaches us that wave functions can be determined.

Perhaps the only difference between atomic physics and nuclear physics is 


that the interaction is known in the former case.


In nuclear physics the interaction is well described in terms of OPEP and one

parameter to account for short-distance effects.


My opinion- SRC can be measured
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More than opinion is needed
Theorists have softened the interaction to simplify calculations of nuclear ener-
gies this is called Vlow k or using Similarity Renormalization Group (SRG), or
in -medium SRG. These transformations can be thought of as unitary transfor-
mations that eliminate matrix elements of the potential between low and high
momentum states, which do not change the scattering phase shifts:

hlow k|V |high ki = 0

These transformations can be expressed as unitary transformations that leave
matrix elements invariant

h |O| i = h U†
|UOU †

|U i

The extracted wave functions depend on whether the interaction operator is O
or UOU †. Accepting this ambiguity means agreeing that wave functions cannot
be studied or constrained by experiments.

<latexit sha1_base64="ZxFF7cdGDVhZjNIuaJvalSQu9uY="></latexit>

This ambiguity is not acceptable for the hydrogen atom. Who would say text-
book wave functions are wrong?

<latexit sha1_base64="+x2h2G/mViL8LpdAohO89orMHAc="></latexit>
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Why should not use  instead of U𝒪U† 𝒪

•   is simple   is not

• To find stuff out do experiment at kinematic 
conditions where you know  is correct

• Basically impulse approximation

𝒪 U𝒪U†

𝒪
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Summary

• basic elements of nuclear saturation identified  

• Nuclear shell-model is an approximation, there are two-nucleon correlations

• Short range correlations that produce high-momentum nucleons are inevitable

• Effects of SRC are measurable

• Short range correlations have been measured- other talks

• SRC are here to stay,  we don’t care what people say
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