# 缪子物理国际前沿动态

#### 吴琛

#### 大阪大学核物理研究中心 基于HIAF集群的高精度测量和新物理前沿研讨会 2023/7/6, 惠州

### Muon as a probe to new physics

- Neutrino oscillations gradually verified by experiments:
  - neutrinos are massive, and lepton flavor conservation is violated.
- Too many mysteries about neutrino masses and mixings
  - New physics models needed! SeeSaw, SUSY, extra-Dimension, ...
- Difficult to search for new physics directly on energy frontier
- Indirect search: precision frontier
  - Muons are particularly important: relatively long lifetime, easy to produce, not too light, simple SM physics.
  - Processes to search for new physics: CLFV, g-2, EMD

## Hints for new physics (in lab): muon?



#### g-2 anomaly: since 2006

couplings of electroweak gauge bosons are "blind" to lepton flavor: lepton flavor universality.

Lepton flavor universality anomaly



## Charged Lepton Flavor Violation (CLFV)

 Neutrino Flavor Violation is observed !

 Ve
 Ve

 Ve
 <t

Highly suppressed in SM+ $m_{\nu}$  by GIM due to the smallness of  $m_{\nu}$ 

CLFV Widely predicted in NP models related to neutrino mass origin.

(b) Z-prime

(e) Exotic Higgs

(c) Leptoquarks

(f) Supersymmetry

 $H^0$ 

(a) Exotic Higgs

(d) Heavy Neutrinos



S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340



#### CLFV experiments: muons!



 $\theta_D$  parameterizes the relative magnitude of dipole and four-fermion coefficients

#### $\mu \to e \gamma$

- Starting from positive muons stopped in target.
- Signal is back-to-back electron positron pair.
- Background dominated by accidental events:
  - DC beam preferred. Detector resolution limit.
- Can search for  $\mu \rightarrow eX(\gamma)$  in the meantime





Cecilia Voena, Muon4Future workshop

 $\mu \rightarrow e\gamma$ : MEG-II @ PSI



 $\mu \rightarrow e\gamma$ : MEG-II VS MEG

- MEG: operated 2008~2013, 90% CL upper limit set to  $4.7\times10^{-13}$
- MEG II: 2021~2026, aims at  $4\times 10^{-14}$ 
  - detector resolution and efficiency x2
  - Beam intensity x2:  $3 \times 10^7/s \rightarrow 5 \times 10^7/s$ . Can achieved:  $10^8/s$ .

$$B_{acc} \propto \Gamma_{\mu}^2 \cdot \delta E_e \cdot (\delta E_{\gamma})^2 \cdot \delta T_{e\gamma} \cdot (\delta \Theta_{e\gamma})^2$$

|                                           | MEG     | MEG II (design) | MEG II (Meas.) |
|-------------------------------------------|---------|-----------------|----------------|
| $\Delta E_e$ [keV]                        | 380     | 130             | 90             |
| $\Delta 	heta_e$ / $\Delta \phi_e$ [mrad] | 9/9     | 7.0/5.5         | 8/7            |
| <i>e</i> ≁ Eff. [%]                       | 40      | 70              | 65             |
| $\Delta E_{\gamma}$ [%] (deep/shallow)    | 1.7/2.4 | 1.0/1.1         | 1.7/2.0        |
| $\Delta pos_{\gamma}$ [mm]                | 5       | 2.4             | 2.5            |
| γ Eff. [%]                                | 60      | 70              | 60             |
| ∆t <sub>eγ</sub> [ps]                     | 120     | 85              | 80             |
|                                           |         |                 |                |



Yuki Fujii, Muon4Future workshop 8

### New muon beamline design in PSI: HiMB

- Aim:  $10^{10}\mu/s$ , surface muon, DC beam.
- Schedule: long shutdown 2027~2028
- Serves for particle physics ( $\mu \rightarrow e\gamma$ ,  $\mu \rightarrow ee$ , muEDM) and muSR research.
- Optimizations on target, capture and transmission are ongoing.

Existing To

hielding around Tol removed for better visib Beamline MUH3

Proposed solenoidal beam line to increase the transmission efficiency



0.45 T 0.1 T 0.45 T

#### $\mu \rightarrow e\gamma$ : next generation experiment

- HiMB Physics Case Workshop started from April 2021.
  - Positron detection: gaseous of silicon
  - Photon detection: calorimetry or conversion layer.





The plan with active multiple layer conversion layers. Silicon detector for positron.



10

#### $\mu \rightarrow eee$

- Starting from positive muons stopped in the target.
- Signal: 3 electrons from the same vertex.
- Background: internal and combinatorial events:
  - DC beam preferred. Detector resolution limit.
- Can search for  $\mu \rightarrow eX(\gamma)$  in the meantime





#### $\mu \rightarrow eee$ : Mu3e @ PSI



12

#### $\mu \rightarrow eee$ : Mu3e @ PSI

- Phase-I aims at  $\sim 10^{-15}$  sensitivity.
- Phase-II aims at  $\sim 10^{-16}$  sensitivity.
  - Will use muons from HiMB:  $10^9 \mu/s$
  - Detector needs upgrade.





### $\mu N \rightarrow eN$

- Starting from negative muons stopped in the target.
- Signal: 1 mono-energetic electron.
- Background: intrinsic, beam related, cosmic ray
  - Pulsed beam preferred. Excellent extinction factor required.
  - Cosmic ray veto needed.
- Can search for  $\mu^- N \to e^+ N$ ,  $\mu \to e X$  in the meantime.

#### Intrinsic background: DIO. Can be well separated with current detector.







Using pulsed beam and delayed window to avoid beam related background.



#### $\mu N \rightarrow eN$ : Mu2e @ FermiLab

- Mu2e aims at 90% CL upper limit  $8 \times 10^{-17}$  with 8 kW proton beam.
  - Under construction. Data taking from 2025~2026.
  - 1/2y before shutdown (run 1), 4y after (run 2).
- Mu2e II aims at  $8 \times 10^{-18}$  with 100 kW proton beam.
  - planed after PIP-II upgrade. Somewhere after 2030.
  - Needs 5 years data taking.
  - Infrastructure will be reused. Target/Detectors need upgrade.





#### $\mu N \rightarrow eN$ : Comet @ J-parc

- Phase-I aims at 90% CL upper limit  $7 \times 10^{-15}$  with 3.2 kW proton beam
  - Under construction. Data taking from 2024~2025.
  - 150 days data taking.
- Phase-II aims at  $4.6 \times 10^{-17}$  with 56 kW proton beam
  - Planned 3 years after Phase-I. Needs 1 year data taking.
  - May aim at  $7 \times 10^{-18}$  in case of schedule delay.
  - Infrastructure will be reused. Target/Detectors need upgrade. SC beamline needs extension.







### $\mu N \rightarrow eN$ : Next generation

The original design before COMET Started from 2005.



The PRISM group is still updating the design to achieve an ultimate search for  $\mu N \rightarrow eN$ 



In synergy with muon collider: target, capture, and storage ring. Might be the most intense muon beam before muon collider.

17

### $\mu N \rightarrow eN$ : Next generation

- Issues
  - FFA needs special muon beam input: narrow bunch, low rate.
  - 1 MW brings challenge to target station and detector/electronics.
- Benefits
  - Pure low energy muon beam: no longer relies on delay window. We can finally probe high-Z material: possible to tell apart different NP models.



## $\mu N \rightarrow eN$ : Next generation

- FermiLab will have its accelerator upgraded: PIP-II, 8kW -> 100 kW
- Advanced Muon Facility (AMF) was proposed to make use of PIP-II for next generation muon physics
- $\mu N \rightarrow eN$  plan in AMF took the idea from PRISM: in cooperation.
- AMF proposed to use compressor ring to make beam structure for FFA
  - 10 ns bunches at 100-1000 Hz
- Pile-up effect will be too much
  - Need PRISM type detector: select electrons.
  - $\mu^- N \rightarrow e^+ N$  needs separate run in this case.



AMF: hep-ex 2203.08278



#### • Starting from muonium formed in special target (Aerogel/SF-He/...)

• Search for the the high-E electron and low-E positron.

 $M \to M$ 

• Background: internal ( $\mu \rightarrow eeevv$ ) and combinatorial events



Shihan Zhao, Workshop on a Muon Physics at the Intensity and Precision Frontiers

#### Prospect in the future: EIC, MuIC, LHC/LHmuC

- EIC and MuIC, LHmuC provide sensitivities on unique channels.
  - Two examples shown here.







Zuo, CLFV 2023

## Muon g-2

After solving out the SM components with high precision, muon g-2 is a good place to search for new physics.



Get g-2 by measuring spin precession frequency under magnetic field.



Best measurement result: 2006 at BNL, 0.53 ppm 3.8 sigma discrepancy lasted ~20 years!



#### Muon g-2: after BNL

FermiLab

Same design Upgraded beam and detector



J-PARC

(212 MeV, 300 MeV/c,

An-/n~10-5

3D spiral

injection

MRI-type

detecto

rage magne

#### Totally new design.

Table 4: Comparison of various parameters for the Fermilab and J-PARC (g-2) Experiments

| Parameter                        | Fermilab E989       | J-PARC E24          |
|----------------------------------|---------------------|---------------------|
| Statistical goal                 | $100\mathrm{ppb}$   | $400\mathrm{ppb}$   |
| Magnetic field                   | $1.45\mathrm{T}$    | $3.0\mathrm{T}$     |
| Radius                           | $711\mathrm{cm}$    | $33.3\mathrm{cm}$   |
| Cyclotron period                 | $149.1\mathrm{ns}$  | $7.4\mathrm{ns}$    |
| Precession frequency, $\omega_a$ | $1.43\mathrm{MHz}$  | $2.96\mathrm{MHz}$  |
| Lifetime, $\gamma \tau_{\mu}$    | $64.4\mu{ m s}$     | $6.6\mu{ m s}$      |
| Typical asymmetry, $A$           | 0.4                 | 0.4                 |
| Beam polarization                | 0.97                | 0.50                |
| Events in final fit              | $1.8 	imes 10^{11}$ | $8.1 	imes 10^{11}$ |

#### Muon g-2: FermiLab

#### About to finish data taking of Run-6.



Current result with Run-1.



New results coming soon!



cf. Contribution to the muon g-2 implies ...

#### Muon EMD

$$d_{\mu} | \sim \frac{e}{2m_{\mu}} \Delta a_{\mu} \sim 2.34 \times 10^{-22} \, e \, \mathrm{cm}$$

#### **History of muon EDM searches**



5 Feb 17, 2020 Kim Siang Khaw I Overview of muon EDM searches

MuEDM at PSI



#### Muons for precise measurement

#### MuonE @ CERN

•







ECAL

 $10^{-3}$ 

 $10^{-5}$ 

 $10^{-7}$ 

 $a_{\mu}$ δa,,

HLbL

P (GeV/c)

Mean y -13.15

Std Dev x 31.47 Std Dev y 40.22

### Muonic atom spectroscopy at J-PARC





#### Precise measurement at PSI

#### MuLan at PSI

- Strategy
- pulsed time structure with kicker



- segmented, fast, simple detector











- Basic QCD Symmetries
- Axial nucleon current





- Weak few nucleon reactions
- Neutrino astrophysics



Balandin - 1974

Giovanetti - 1984 Bardin - 1984

Chitwood - 2007 Barczyk - 2008 MuLan - R06

MuLan - R07

2.19715 Lifetime (us)

## Summary

- Muons have unique properties:
  - Not too heavy, not too light, very clean.
- Muons play important role in the precision frontier searching for the new physics beyond the standard model:
  - CLFV, EDM, g-2.
  - Can probe 10^5 TeV indirectly
  - In synergy with energy frontier: muon collider?
- Muons provide unique playgrounds for precise measurements
  - Muonic atom spectroscopy, muon nuclear capture, muon scattering, muonium gravity...