EicC Vertex & Tracking Detector Simulation and Performance Study

Aiqiang Guo, <u>Yuming Ma,</u> Yutie Liang, Yuxiang Zhao

Institute of Modern Physics, CAS

The latest design

Barrel:

R(cm)	Length(cm)	Pitch Size(μm)	Material Bedget (X/X0 %)	Tech
3.30	28	10	0.08	ITS3
4.35	28	10	0.08	ITS3
5.40	28	10	0.08	ITS3
8.00	28	10	0.08	ITS3
15.00	38.70	10	0.08	ITS3
47.72	127.47	150(rp)x150(z)	0.40	MPGD
49.57	127.47	150(rp)x150(z)	0.40	MPGD
75.61	201.98	150(rp)x150(z)	0.40	MPGD
77.46	201.98	150(rp)x150(z)	0.40	MPGD

End cap p going:

In R(cm)	Out R(cm)	Z(cm)	Pitch Size(μm)	Material Bedget (X/X0 %)	Tech
3.18	18.62	25	10	0.08	ITS3
3.18	36.50	49	10	0.08	ITS3
3.47	54.66	73	10	0.08	ITS3
5.08	77.46	103.65	10	0.08	ITS3
6.58	77.46	134.33	10	0.08	ITS3
8.16	150.00	165.00	50(rp)x250(r)	0.40	MPGD

End cap e going:

In R(cm)	Out R(cm)	Z(cm)	Pitch Size(μm)	Material Bedget (X/X0 %)	Tech
3.18	18.62	-25	10	0.08	ITS3
3.18	36.50	-49	10	0.08	ITS3
3.18	54.66	-73	10	0.08	ITS3
3.95	77.46	-109.0	10	0.08	ITS3
5.26	77.46	-145.0	10	0.08 2	ITS3

The issue of the latest design

- The large area of silicon detector at the forward & backward put a heavy burden on the readout system
- Only the radius of the sagitta layers are optimized by single track events
- The Layer number and radius (position) are not optimized properly
- The scale and structure of the detector need dedicated optimization according to our physical requirement !!

Analytic expressions for track parameter resolution

- By simulation
 - Very time consuming
- By analytic expressions
 - We need to know all the factors that affect the resolution
- Track model: $f(x) = \sum_{i} a_{i}g_{i}(x)$ with M unknow parameters
- N measurement y_n ,
- The parameters a_i are estimated by

$$\chi^{2} = \sum_{m=0}^{N} \sum_{n=0}^{N} \left[y_{m} - \sum_{i=0}^{M} a_{i}g_{i}(x_{m}) \right] W_{mn} \left[y_{n} - \sum_{i=0}^{M} a_{i}g_{i}(x_{n}) \right]$$

Track parameter
$$\chi^{2} = (\mathbf{y} - \mathbf{G}\mathbf{a})^{T}\mathbf{W}(\mathbf{y} - \mathbf{G}\mathbf{a})$$

measurement

To minimise
$$\chi^2$$
 we have to solve $\frac{\partial \chi^2}{\partial a_i} = 0$ which gives
 $\mathbf{a} = (\mathbf{G}^T \mathbf{W} \mathbf{G})^{-1} \mathbf{G}^T \mathbf{W} \mathbf{y} = \mathbf{B} \mathbf{y}$

The error of a can be determined by the errors of y

 $\mathbf{C}_a = (\mathbf{G}^T \mathbf{C}_y^{-1} \mathbf{G})^{-1}$ \mathbf{C}_y is the covariance matrix of y

Analytic expressions for track parameter resolution

Input parameters for calculation:

- Momentum, Mass of track
- Number of sensitive layers and support layers
- Radius of the layers
- Material budgets of the layers
- Resolutions of r_phi and z direction for each layer
- magnetic field

```
B, Theta = 1.5, pi/2.0
Example:
          nl, sp = 11, 2
          xlen = [0.0022, 0.00045, 0.00045, 0.00045, 0.00107, 0.0008, 0.0008,
                 0.0040, 0.0040, 0.0040, 0.0040]
                                            68.0, 80., 150.,
          radi = [31.0, 33.0, 43.5, 54.0,
                 477.2, 495.7, 756.1, 774.6]
          loc0 = [9.9, 0.010/3.464, 0.010/3.464, 0.010/3.464, 9.9, 0.010/3.464, 0.010/3.464,
                 0.15/3.464, 0.15/3.464, 0.15/3.464, 0.15/3.464]
          0.15/3.464, 0.15/3.464, 0.15/3.464, 0.15/3.464]
          effi = [0., 1., 1., 1., 0., 1., 1.,
                 1., 1., 1.,
                                    1.]
          res = resolution(1, 0.106, nl, radi, xlen, effi, loc0, loc1, Theta, B, True, True, 1, sp)
```

Comparison of dp/p vs pt

• Compare resolution from MC simulation and analytic calculation:

Two contributions: detector resolution, multiple scattering

Comparison of DCArp and DCAz vs pt

Comparison of dp/p vs Radius of layers

Optimization of the Radius of tracking detector

 The scale and structure of the detector need dedicated optimization according to our physical requirement !!

Physics requirements for **EicC**

- Barrel (-1 < η < 1.6):
 - σ(p)/p<1% @ 1GeV; X/X0 <5%

Optimization of the Barrel

Barrel Radius

Optimized based on vertex(ITS3*3)+barrel(ITS2*2+MPGD*2), using tracks with pt = 4 GeV

2 MPGD Layers vs. 4 MPGD Layers

Performances are almost the same for tracks with p<4 GeV;

Radius of Si layers

- Optimization with Inclusive MC
- The distance of 2 Si layers are fixed to 4 cm

Optimization of Endcaps

Momentum distribution of inclusive MC sample. (generated by PYTHIA 3.5x20 GeV e-p collision)

Optimization of Endcaps

Optimized based on: e going direction (ITS2*5) p going direction (ITS2*5+MPGD*1)

Particle : K, $\eta > 0.5$ & $\delta \eta < 0.5$

Summary

Radius of Barrel: 77.56 cm -> 55 cmBarrel MPGD :4 Layers -> 2 LayersThe size of Si: \sim 70%The size of MPDG: \sim 35%