Csl crystal comparison and performance study ---Update of EicC ECal Study

<u>Ye Tian</u>, Dexu Lin, Yutie Liang Institute of Modern Physics, CAS

EicC Group bi-week Meeting 2023-03-15

e- distribution in final state

- Electron distribution in both high Q2 and low Q2 cut.
- Maxumum energy is about 4 GeV for electron endcap.

CsI module array energy deposit simulation result

- Very good energy resolution: <u>1.2%@1GeV</u>
- Better position resolution(0.48cm@1GeV) than shashlik(0.53cm@1GeV)

Position resolution

Energy leakage for all energy(7x7 CsI Array)

- Definition: (energy) (average energy deposit)
- The cluster reconstruction algorithm is applied.
- With 16 X₀ radiation length, the energy leakage for 4 GeV electron is **4.7%**.

Crystal clorimeter comparison

	Csl	CsI(TI)	Csl(Na)	Nal(TI)	BGO	BSO	PWO	LSO(Ce)	LYSO(Ce)	BaF2	CeF3
					(Bi2O3)2(GeO2)3	(Bi ₂ O ₃) ₂ (SiO ₂) ₃	PbWO4	Lu2(SiO4)O	Lu2(1-x)Y2xSiO5		
Density[g/cm ³]	4.51	4.51	4.51	3.67	7.13	6.8	8.3	7.4	7.1	4.89	6.16
Radiation length[cm]	1.85	1.85	1.85	2.59	1.12	1.15	0.89	1.14	1.16	2.06	1.68
Moliere radius	3.5	3.5	3.5	4.8	2.3	2.18	2	2.07	2.07	3.4	2.6
Interaction length	37	37	37	41.4	21.8	22	18	20.9	20.3	29.9	26.2
Refractive index(peak)	1.95	1.79	1.84	1.85	2.15	2.06	2.2	1.82	1.8	1.5	1.62
Hygroscopicity	Slightly	Slightly	Yes	Yes	No	No	No	No	No	No	No
Emission specturm(peak)	310	560	420	410	480	480	510	420	420	300/220	340
light yield rel. to Nal(%)	5.6	45	85	100	9	4	0.3	85	75	21/2.7	7
Decay time[ns]	35	1300	600	230	300	100	50	40	35	630/0.9	30
Price per cc(\$, 1m ³ batch)	4.6				8	8.5	9		34	12	
Price * X0, rel. to CsI	1				1.05	1.07	0.97		5.89	2.84	
		CLEO,					CMS,				
		BaBar,					ALICE,				
	BELLE2,	BELLE,		Crystal			PrimEx,	SuperB,			
Experiment	mu2e	BES III		Ball	L3, BELLE		Panda	KLOE			

Choice: Csl > Csl(Tl) > BGO

Pure Csl or Csl(Tl)

- Two CsI crystals are considered: pCsI and CsI(TI).
- From white paper, the interaction rate is 83.2 kHz with L=4x10³³cm⁻²s⁻¹, which means ~11 μ s/event, so CsI(TI) could cope with this low rate

	N _{ph} /NICV	τ (ns)
CsI(Tl)1.865501.8CsI1.86305/4002	52 000 5000	1000 30

Crystal	Photons collection device	Radiation hardness	Price	Absorption length	Hygroscopic	Application
Pure Csl (pCsl)	APD, UV SiPM	good	¥35/cc(IMP), purity related	1 – 1.5 m	Slightly	High rate experiemnt
CsI(TI)	PD, APD	normal	Lower than pCsl	*30cm @450nm (<50cm)	Slightly	Commonly used

Crystal calorimeter readout: Si photon detector

- N photons dynamic range: PD > APD > SiPM
- Gain: SiPM(10⁶) > APD(50) > PD(1)

Photodiodes(PD) For CsI(TI)

Avalanche Photodiodes(APD) For pure Csl

Silicon photomultiplier(SiPM)

Wavelength (nm)

Wavelength (nm)

5*5 CsI array optical simulation

- 5*5 CsI array, read out by four 6mmx6mm SiPMs
- 250 μm carbon fiber and 70 μm tyvek is used for wrapping
- Actual light yield x10, better energy resolution
- The absorption length is assumed as 100cm
- Both 5k/MeV(CsI(TI)) and 50k/MeV(CsI) light yield are simulated

e enenrgy (GeV)	Initial light yield(N.P.E./MeV)	N.P.E. collected by SiPMs	Enenrgy resolution (%)	(%)
0.1		6200	3.16	solution
0.2		12400	3.01	inergy re
0.5	5000	31200	2.43	ш
0.7		43900	1.87	
		62800	1.81	
1	20000	255000	1.79	
	50000	621500	1.80	

Energy resolution

STCF: 156 p.e./MeV for pCsI

CsI(TI) module cosmic test

- Test purpose: get the CsI(TI) waveform and attenuation length
- CsI(Tl) bar: 4(3) *4 *25 cm, made by IMP
- Each end coupled with a PMT, waveform is collected by FADC
- Cosmic ray is triggered by two 4*4*0.6 cm scintillator tile that placed upper and lower side

Cosmic ray test result

• A 2 µs window is used as time window to integrate the signal.

waveform

Entries

Mean Std Dev

• Simulation shows 22.3 MeV energy deposit in CsI, created 1.1M photons.

Cosmic ray signal sample

ADC che

Energy deposit simualtion

Conclusion and outlook

- The increase of photon number of CsI(TI) has less significant contribution to energy resolution than CsI
- The attenuation length of CsI(TI) is rather low, which influence the crystal uniformity
- The pCsI is a better choice, and need higher purity that means higher cost

Next work plan

- Crystal tech is mature, more study and test on crystal calorimeter
- Buy more crystal sample: pCsI(Hamamatsu, 硅酸盐所), Cherenkov crystal, others.
- APD/PD and related electronics research and test

TUNIZ $\gamma(0)$

Csl caorimeter comparison

Detector	crystal	Photon sensor	p.e./MeV	Year of publishing
STCF	pCsI	APD	156 p.e./MeV (with two S8664-1010 APDs).	2022
Belle2	CsI(TI) + endcap pCsI upgrade	pCsI : Two-inch vacuum photopentodes PPs (PMT) CsI(TI) : PIN-Photo- diodes		2010
Mu2e (100MeV)	pCsI	UV SiPM (SiPM surface add additional coating)	Light output: > 100 p.e./MeV with 200 ns integration gate	2018
BESIII	CsI(TI)	PD(2* 1cm*2cm)		