ECal reconstruction optimization with neural network(NN) ---Update of EicC ECal Study

<u>Ye Tian</u>, Dexu Lin, Yutie Liang Institute of Modern Physics, CAS

EicC Group bi-week Meeting 2022-08-03

Principle of NN(neural network)

linear

Row

Why attempt to use NN?

Advantage:

- Future detector reconstruction trend, lots of related articles published in recent few years
- Method is simple, easy for trying
- Could improve the reconstruction performance
- Could deal with complicated logic automatically

Disadvantage:

- The module from training only works for specific data.
- Need amounts of events for training
- The training module influence result, need to tune (work experience)
- CPU/GPU consuming

ATLAS and CMS CNN & GAN (generative adversarial network) to generate ECal shower

Fig. 7 GEN sample: electrons with different primary particle energies

responding to the electrons showed in Fig. 7

NN method of ECal introduction

- 7*7 Shashlik array simulation, 4*4 cm vertical area source
- Train input: N.P.E. of 49 modules
- Output : energy, position, incident angle, PID
 - Energy resolution
 - Position resolution
 - PID: e/pi separation
- Attempt to use neural network for reconstruction
- CNN (convolutional neural network) is NOT applied since no improvement(only tried one time).
- Train situation: local MacOS, single CPU core, python(PyTorch), training data from simulation

• 4X4 cm² area source

NN structure:

<pre>self.fc = nn.Sequential(</pre>
<pre>nn.Linear(49, 80), #bias is true for default</pre>
nn.ReLU(True),
<pre>nn.Linear(80, 100), #bias is true for default</pre>
nn.ReLU(True),
nn.Linear(100, 50),
nn.ReLU(True),
nn.Linear(50, 15),
nn.ReLU(True),
nn.Linear(15, 5),
nn.ReLU(True),
nn.Linear(5, n_class)
)

Energy reconstruction (1-2 GeV e-)

6

Energy resolution compared with other result

 $\begin{array}{c} 0.12 \\ 0.12 \\ 0.1 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.001 \\ 0.08 \\ 0.001 \\$

NN training with [1 GeV, 2 GeV]:

• 1-2 GeV average: 3.29%

NN training with [0.5 GeV, 5 GeV]:

- 0.6 GeV: 5.9%
- 1 GeV: 4.5%
- 2 GeV: 3.5%
- 4 GeV: 2.53%

Add all blocks simply for each energy point: (ordinary method)

- 0.6 GeV: 5.4%
- 1 GeV: 4.25%
- 2 GeV: 3.2%
- 4 GeV: 2.5%

- Larger training energy range lead to worse energy resolution.
- No significant improvement compared to ordinary method.

w0 parameter optimization for position reconstruction

In earlier studies position corrections were applied to remove this bias (the so-called S-shape correction [6]), but we now use a simpler algorithm which delivers almost as good precision by calculating the weighted mean using the logarithm of the crystal energy:

The w0 parameter value 4.2 is acquired from article for crystal ECal, and need to be adjusted and optimized for Shashlik.

 $\mathbf{x} = \frac{\sum \mathbf{x}_i \bullet \mathbf{W}_i}{\sum \mathbf{W}_i}$

ln(x)

where x_i the position of crystal i, and W_i is the log weight of the crystal — the log of the fraction of the cluster energy contained in the crystal, calculated with the formula: Exp $(-W_0)$

> $W_i = W_0 + \log\left(\frac{E_i}{\sum E_i}\right)$ The W_0 value need to be tuned. For W_0 =4.2, equivalent to $E_i/E>0.015$.

W0=3.5 equivalent to $E_i/E>0.03$

w0 optimization value relevant to electron energy.

Position resolution with NN method (0.5-5 GeV)

Both x and y as output simultaneously, and same resolution: 3.07mm

Use NN trained model to test single energy data: [mm]

- 0.6 GeV: 5.77
- 1 GeV: 4.6
- 2 GeV: 3.1
- 4 GeV: 2.52

Compared with **the plot shown above**: [mm]

- 0.6 GeV: 6.2
- 1 GeV: 5.3
- 2 GeV: 3.65
- 4 GeV: 2.7

- NN method for position reconstruction is much better than w0 method.
- May exist other better "theoretical calculation" method!

PID: e/π separation of ECal

Ratio from pythia

e-/ π - separation with NN method

- Training input: N.P.E. of 49 blocks + REAL momentum (total 50 parameters)
- Training output: the possibility of e and π , the particle with larger possibility is regarded as output.
- Training data: 200k, 1-2 GeV e and π separately
- Result: (10k data for test)

percentage (%)		Real PID	
		е	π
PID result	е	99.2	2.3
	π	0.8	97.7

Use shower spread radius to separate e/π (R cut)

Principle: hadron shower has wider shape.

$$V(x) = \sum (x_i - x_{re})^2 \frac{w_i}{w_{all}}$$

$$V(r) = \sqrt{V(x)^2 + V(y)^2}$$

Considering both E/P and R cut for 1-2 GeV/c e/π

$$V(x) = \sum (x_i - x_{re})^2 \frac{w_i}{w_{all}}$$

Artificial cut selection and PID result (1-2 GeV/c)

- Artificial cut is better than NN method for less π
- Good result for PID: e efficiency > 99%, π rejection ~ 100:1
- If considering the real e/π ratio, cut selection and PID result will be much different
- Shower method and MIP/time method result for e/π is independent

Considering both E/P and R cut for 0.5-1 GeV/c e/ π

$$P_{\perp min} = r * H * \frac{\frac{e}{c}}{P \to m} = 0.45 * 1.5 * \frac{\frac{1.6}{3}}{1.78} = 0.202 \frac{\text{GeV}}{\text{c}}$$

If a particle has P_{\perp} less than 0.202 GeV/c, it will never hit barrel, but could hit the endcap.

Percentage (%) <mark>(210k events)</mark>		Real PID	
		е	π
PID result	е	97.4	3.5
	π	2.6	96.5

Low momentum PID get worse, but not too worse.

NN method summary

- Attempt to apply NN method, which should has better result in principle, and has its advantage
- NN has no artificial bias for reconstruction(any cut and method have bias)

Application in ECal (up to now):

- Significant improvement
 - **Position**(continuous value)
- No improvement and even worse: (result not too bad, could attempt to tune)
 - Energy (continuous value)
 - e/π PID (separate value)

Other application:

- Crystal ECal
- Incident angle reconstruction

Energy resolution with different method

Simple geometry

ATLAS like geometry

