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装置 射频超导腔数量

CiADS 167

HIAF 96

IP-SAFE 78

CiADS

HIAF

IP-SAFE

研究背景：CiADS、HIAF、IP-SAFE等国家重大科学装置均采用超导直线加速器作为核心驱动系统，
其长期稳定运行能力至关重要。超导腔作为加速器的核心组件，其性能直接决定装置的整体运行质量

研究背景
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研究背景

LLRF系统的核心作用

◼ 低电平射频系统负责超导腔场的幅度和相位闭环控制

◼ 场稳定性直接影响束流品质和加速效率
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超导加速器对场稳定性的严苛要求

◼ 幅度稳定性：< 0.1%（束流能散增大 → 束流损失、设备活化）

◼ 相位稳定性：< 0.1°（纵向相空间失配 → 束团拉长、加速效率下降）

超导腔工作特性

◼ 运行带宽窄（~100Hz)

◼ 工作梯度高（洛伦兹失谐影响大）

◼ 任何扰动都可能造成掉腔（氦压波动、机械振动）
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研究背景
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PI参数的关键性

◼ 比例增益P：决定响应速度和抗扰动能力

◼ 积分增益I：消除稳态误差，保证长期稳定

◼ 参数配合不当 → 振荡、响应慢、甚至系统失稳
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PI扫描空间优化：

连续波系统

◼ 耦合度较低

◼ 幅度相位各自优化

◼ 复杂度：𝑂(𝑁2)

脉冲波系统

◼ 耦合度较高（LFD）

◼ 幅度相位同时优化

◼ 复杂度：𝑂(𝑁4)

传统矩形搜索 𝐾𝑝 𝐾𝑖 改进三角形搜索 𝐾𝑝 𝑊

左上、右上区域（小𝐾𝑝大𝐾𝑖）易振荡 斜边约束最大增益带宽积

包含部分无效高风险区域 先验排除不稳定区域

研究背景

网格扫描的局限：

𝑊 = 𝐾𝑖/𝐾𝑝代表PI控制器的零点位置
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有效定位最优区域同
时避免振荡



Automated PI Tuning for LLRF: LLM vs Bayesian Optimization

⚫ LLRF系统PI自动优化方法

⚫ 总结

⚫ 研究背景介绍01

02

03

C
O

N
T

E
N

T
S

⚫ 基于Agent的PI参数优化方法

⚫ 基于贝叶斯的PI参数优化方法



Automated PI Tuning for LLRF: LLM vs Bayesian Optimization

引入自动的参数优化算法：

LLM 和 BO

LLRF系统的特殊性

◼ 高精度要求（幅度/相位稳定性 < 0.1%/0.1°）

◼ 强非线性特性

◼ 复杂动态响应（机械振动、氦压波动、洛伦兹失谐）

Black Box

方法 核心思想 特点

贝叶斯优化（BO） 概率代理模型+采集函数 样本高效、系统化搜索

大语言模型优化（LLM） 自然语言推理+专家知识 知识融合、决策透明

LLRF系统PI参数自动优化方法
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贝叶斯优化

◼ 用高斯过程来建模LLRF系统

◼ 观测值包含噪声：𝑦 = 𝑓 𝑥 + 𝜀 𝜀~𝑁(𝜎𝑛
2)

◼ 选用RBF核函数：自动相关性确定，建立参数间的相关性

◼ 采集函数选用UCB：平衡探索和利用

◼ 引入物理约束：功率源不过冲

◼ 实现：XOPT

基于BO的PI参数优化方法

经测试CW模式：𝛽 = 0.5，脉冲模式：𝛽 = 5.0
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LLRF

为什么LLM可以辅助调参？

◼ 训练数据中包含大量控制理论、PID调参的文献和经验

◼ 能够理解物理概念（带宽、相位裕度、振荡、过冲等）

◼ 可以进行因果推理：观察现象 → 分析原因 → 建议调整

基于Agent的PI参数优化方法
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优化轨迹对比

◼ 优化参数：二维（𝐾p,𝑊）

◼ LLM：轨迹平滑，逐步逼近最优区域（类人启发式推理）

◼ B0：初期分散探索，后期快速收敛（不确定性驱动探索）

从不同的初始点出发，两种方法都能在15次迭代内
收敛到最优区域（图中深蓝色）

连续波模式：BO vs Agent
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专家知识集成的重要性

◼ 对照组：完整Prompt（含专家规则）

◼ 消融组：移除专家规则，仅保留基础框架

𝑉𝑓,𝑟𝑚𝑠增加时智能"转向"，降低𝐾𝑝

专家知识集成是LLM方法的核心优势，通过自然语言编码物
理约束（允许规则模糊）和操作经验，使优化过程更安全、

高效、可解释

连续波模式：BO vs Agent
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脉冲优化任务：

◼ 优化参数：六维（𝐾ap,𝑊𝑎 , 𝐾𝑝p,𝑊𝑝 , 𝐹a, 𝑇𝐹𝐵）

◼ 优化目标：最小化𝐽1（闭环建立时刻），约束𝐽2（束流到达时刻）

LLM方法

轨迹平滑无极端探索点

𝐽1始终保持中等范围

保守策略

约20次迭代收敛

BO方法

两阶段：探索→利用

𝐽1偶尔波动较大

系统化搜索

约20次迭代收敛

脉冲波模式：BO vs Agent
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优化结果展示

优化后参数——脉冲内和脉冲间的稳定性测试：

脉冲内稳定性对比 1小时连续运行的脉冲间稳定性对比
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如何兼顾脉内与长期稳定性？

◼ 使用BO进行多次迭代优化

◼ 使用Agent评估并筛选满足条件的参数设置

第一组PI 第四组PI

BO与Agent结合
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总结与结论

◼ 提出基于LLM的LLRF PI参数优化新方法，首次将大语言模型引入加速器控制参数优化

◼ 对比BO与LLM两种方法的优化行为、收敛效率与适用场景

◼ 在HIAF-iLinac完成多腔、多模式（CW/脉冲）实验验证

贝叶斯优化 (BO) LLM优化

优化行为 不确定性驱动，系统探索 启发式推理，保守平滑

收敛效率 CW ~12次 / 脉冲 ~20次 CW ~15次 / 脉冲 ~20次

高维扩展 强（GP建模参数耦合）
受限（ref:   
10.1126/sciadv.adr4173 ）

计算资源 CPU即可 需GPU支持

✓ BO适用于离线、大规模批量优化

✓ LLM更适用于在线参数微调、提供透明化的决策

✓ 结合BO与LLM可解决长期稳定性问题
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https://doi.org/10.1126/sciadv.adr4173
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