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大型粒子加速器是探索微观世界的“超级显微镜”

➢ 需长期稳定运行，异常会导致实验失败、设备损坏甚至安全风险
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能量1.6Gev、功率500kW（二期），主要用于产生中子束

中国散裂中子源（ CSNS ）

➢ 应用案例：CSNS漂移管直线加速器（DTL），负责将3MeV负氢离子加速至80MeV



现有异常检测痛点

➢数据层面：多传感器采集的高维时序数据时空耦合紧密，传统方法

难以解耦

➢技术层面：现有方法要么时空融合不充分，要么依赖高质量标注数

据，而加速器异常样本稀缺

➢工程层面：加速器结构复杂，故障模式多样，包括机械误差、电场

误差等，通用方法适配性差
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研究目标

➢核心目标：解决时空信息融合不足、依赖标注数据的问题，实现更

精准异常检测

✓ 提出时空对比融合（Spatial-Temporal Contrastive Fusion，STCF）

框架，协同时序与空间特征

✓ 仅需正常数据训练，避免异常标注依赖

✓ 基于CSNS实际数据验证
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异常检测技术分类
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现有方法局限性
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➢时空分离：未充分融合多传感器的时序动态与空间依赖

➢标注依赖：监督学习需大量异常标注，无监督方法泛化能力弱

➢场景适配：针对通用数据设计，未适配加速器数据的强耦合特性
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时空对比融合（STCF）整体框架设计
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➢核心逻辑：仅用正常

数据训练，充分融合

时空特征

➢核心流程：数据预处

理与增强→时序特征

提取→空间特征强化

→时空对比融合→异

常判定



数据预处理与增强
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➢ M个传感器的时间序列X(t)={x(1)(t),x(2)(t),…,x(m)(t),…,x(M)(t) }

➢ 滑动窗口切片：按窗口大小为k、步长为l分割时序数据（ Xs(t)为第s片段）

➢ 子序列打乱：将每个切片均分后随机重排，生成乱序子序列{Xs,1(t), Xs,2(t),…,Xs,Q(t)}

➢ 数据集构建：整合原始切片与乱序子序列，形成训练数据R(t)={Xs(t),Xs,1(t),Xs,2(t),…,Xs,Q(t)}



时序特征提取
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➢ 核心组件：扩张因果卷积网络 （u是卷积核的大小，Wj代表卷积核，

R(t-j)d表示过去的输入，d则表示膨胀率。）

➢ 因果卷积：仅依赖历史数据，避免信息泄露

➢ 扩张卷积：扩大感受野为(t−1)⋅d+1 个时间点，捕捉长时依赖

➢ 残差连接：避免深层网络中的梯度消失问题，提升深层特征提取能力



空间特征强化
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➢ 设计目的：引入通道注意力机制，强化空间特征区分度，抑制冗余信息

➢ 压缩：全局平均池化获取通道全局信息 （ c是通道数，H是时间步数）

➢ 激励：通过全连接层与激活函数生成通道权重 （W1和W2

为两个线性变换矩阵，𝜎为Sigmoid函数）

➢ 加权：输入特征的每个通道将按对应的注意力权重缩放，突出关键特征



时空对比融合策略

15

➢时序对比：排序损失

⚫核心逻辑：预测子序列原始顺序，量化时序偏差

⚫损失计算：使用Jensen-Shannon散度衡量预测分布P与真实分布Pb间的差异



时空对比融合策略
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➢空间对比：距离损失

⚫核心逻辑：计算原始与增强样本的特征相似度，量化空间分布差异

⚫损失计算：使用分布特征余弦距离D和嵌入特征余弦距离Dm间的均方误差

来衡量距离差异



异常判定
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➢加权融合策略：L=αLo ​+βLd（ αLo=βLd​ ，α+β=1）

➢综合异常分数：𝑉 =𝜎(𝐿)，Sigmoid函数归一化至 [0,1]

➢阈值优化：遍历候选阈值，基于 F1 分数确定最优阈值θʹ

➢当异常分数≥阈值时判定为异常



异常检测流程
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1. 数据预处理与增强：采集多传感器数据，生成切片与乱序子序列

2. 时序特征提取：通过时序卷积提取时序特征Yi

3. 空间特征强化：引入通道注意力机制生成时空特征Si

4. 时空对比融合：计算排序损失与距离损失，生成总损失L

5. 异常判定：计算异常分数V，与最优阈值θʹ对比，输出检测结果
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实验数据配置
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➢数据来源：CSNS DTL 2021年实际运行数据

➢数据规模：21个传感器（12个束流损失+9个真空传感器），采样频率1Hz

➢数据集划分：1月前7天正常数据为训练集，3、4、5、7、11、12月数据为

测试集（异常率1.36%-8.87%）



实验数据处理
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➢传感器时序数据被用长度为30秒的滑动窗口进行切片，滑动步长为3秒，得

到切片的序列



实验数据处理
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➢切片的序列被存储并10等分后随机打乱顺序，以生成人工异常序列，对于

每个切片序列，会生成5个乱序的后续序列



实验模型参数
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➢实验使用的时空对比融合（STCF）网络结构

➢学习率=0.001，批量大小=32，训练迭代次数=50



核心结果
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➢整体性能：平均精确率0.89、召回率0.75、F1分数0.80

➢月度表现：5月性能最优（P=0.97、R=0.89、F1=0.92），7月性能略低（异常

模式过于复杂而难以被识别）



不同方法对比分析
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➢对比方法：D³R、GDN、

AFMF、TopoGDN等主流异

常检测模型

➢STCF优势：F1分数优于其

他对比方法，时空融合效果

显著

➢STCF不足：计算时间比其

它方法更长



消融实验分析
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➢实验设计：验证时序卷积、通道注意力的作用（基于2021年3月数据）

➢消融实验1：时序卷积替换为Transformer，F1分数降至0.87

➢消融实验2：移除通道注意力，F1分数降至0.86

➢消融实验3：通道注意力替换为多头注意力，F1分数降至0.87

➢结论：各组件协同作用，时序卷积与通道注意力是保障性能的关键
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研究结论
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➢ 提出时空对比融合（STCF）

框架，有效融合时空信息，

解决传统方法融合不足的

问题

➢ 仅需正常数据训练，突破

异常标注稀缺的瓶颈

➢基于CSNS实际数据验证，

平均F1分数达0.80，性能优

于主流方法



未来展望
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➢通过分析不同故障源对信号的影响，进一步探究时空对比融

合（STCF）框架的扩展应用

➢优化模型结构，降低计算复杂度，适配更长时序数据

➢进一步探索将声音、红外、视觉等多模态数据，与现有束流

损失、真空度等数据深度融合，构建设备全面感知网络，提

升对复杂异常的检测精度
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