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大科学装置中AI技术应用的总体目标

⚫ 加速器装置参数自动优化、一键运行、故障提前预警、预测性维护
⚫ 实验数据高效自动分析，不同实验方法数据融合，基于加速器束流参数变化的数据分析补偿



AI技术在大装置建设运行中的应用潜力

必须知道目标函数、特定物理关系和阈值 不需要显式的规则（自己根据样本学习）

受实际的环境影响理论关系与实际关系有差距 考虑到各种人工难以发现和定量的细节的影响

主要针对线性优化行为，目标参数相对较少
不受非线性影响，可以方便的建立包含成百上千参

数的复杂模型

实时性较差，耗费大量计算资源 训练过程完成后可以进行快速的在线处理



大装置中不同层级AI技术的应用可能

物理信息

原始信号

测控系统

加速器 参数优化、状态预测

挖掘更多更全信息、参数预测（虚拟诊断）、异常判断

数据清洗、降维、降噪重建、函数解析

决策机制、优化控制



NSRL加速器的AI技术应用规划：传统测控框架内的AI技术应用

控制设备 诊断设备
装置运行性能评价测量结果

反馈及前馈

控制参数

①原始信号处理

②装置运行性能评价

③参数校正
① ②

③

操作员



NSRL加速器的AI技术应用规划：加速器的数字孪生

模型训练

控制设备 诊断设备
装置运行性能评价

代理模型性能评价

在线预测模型

历史数据库

实时运行数据集

测量结果

在线模型预测结果

+
-

在线

反馈及前馈

控制参数

①原始信号处理

②装置运行性能评价

③参数校正

④装置数字孪生

① ②

③

④

操作员



NSRL加速器的AI技术应用规划：数字孪生模型的动态更新

模型训练

控制设备 诊断设备
装置运行性能评价

代理模型性能评价

代理模
型更新

在线预测模型

候选预测模型

堆栈式
历史数据库

实时运行数据集

测量结果

在线模型预测结果

候选模型预测结果

+
-

+
- +

-

在线

候选

选优

反馈及前馈

控制参数

①原始信号处理

②装置运行性能评价

③参数校正

④装置数字孪生

⑤模型动态更新

① ②

③

④

代理模型更新命令

⑤

操作员



NSRL加速器的AI技术应用规划：依托智能体的自动调束运行

模型训练

控制设备 诊断设备

装置运行性能评价

代理模型性能评价

代理模
型更新

在线预测模型

候选预测模型

堆栈式
历史数据库

实时运行数据集

测量结果

在线模型预测结果

候选模型预测结果

+
-

+
- +

-

在线

候选

选优

在线控制参数

代理模型更新命令
代理模
型更新

控制模型

智能体

虚拟控制参数

虚拟运行数据集
+ -

新运行目标 控制模型预测结果

控
制

参
数

切
换

判
据

评
价

用户需求



设备层面的应用（信号处理）
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BPM原始波形的逐束团参数预测/信号处理速度提升（HLS-II）

 目标：HLS-II逐束团横向位置，束长，相位快速提取

 方法：全连接网络，一维卷积网络与长短时记忆网络

 模型架构：各司其职，分而治之，统一输入，联合输
出

 数据：以合肥光源BPM四电极采样波形为输入，待
预测的三种逐束团参数为标签

 后续工作：模型融合

•结构：多模型联合预测

• 横向位置：全连接网络

• 束长：一维卷积网络

• 激活函数：一维卷积+长短时记忆网络
•损失函数（loss）：均方误差

•优化器：Adam 

•训练平台：PyTorch

四电极原始信号波形



原始数据降噪（系统测量误差）

研究目标：
解析束流信号处理器通道间串扰系数，束团间串扰系
数，通过解串扰降低系统测量误差，提高测量精度

方法：
基于NN网络精确求解通道间串扰系数



设备运行性能评估（BPM分辨率评估）

 目标：BPM随机测量误差与束流位置共模变化值分
离，对单一设备分辨率进行精确评估

 方法：简单神经网络

 模型架构：各司

 数据：同步采集的多个BPM回读数据

 后续工作：模型融合



基于人工神经网络的BBA（HLS-II）

➢ 束流位置与束流位置变化的关系：

Δ𝒖 𝑠 = Δ𝐾𝑭 𝑠, 𝑠0 𝒖 𝑠0

𝒖 𝑠 = Δ𝐾−1𝑭−𝟏 𝑠, 𝑠0 𝚫𝒖 𝑠0

➢ 将Δ𝒖 𝑠 作为模型的输入， 𝒖 𝑠0 作为模型的输出

➢ 轨道变化Δ𝒖 𝑠 为0时预测的初始轨道即为黄金轨道

➢ 实验步骤：

✓ 随机改变校正磁铁电流，设置束流初始轨道（四极磁铁中的位置）

✓ 将所有四极磁铁强度改变一个相同的值Δ𝐾，记录所有BPM处轨道

的变化

✓ 重复上述过程，完成数据积累

✓ 采集3600组数据进行模型训练，数据采集全程无需人工干预

✓ 预测结果与传统方法多次测量迭代后的一致

✓ 在线实验仅需2小时左右，大大提高了调束效率

Guan-Liang Wang, Ke-Min Chen, Si-Wei Wang, Zhe Wang, Tao He, Masahito Hosaka, Guang-Yao Feng, Wei Xu, Beam based alignment using a neural network, Nuclear Science and Techniques, 2024, 35(4): 75



装置运行性能评估
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基于历史数据的参考轨道温度依赖性研究（数据分析）

𝛥𝑟 = 𝛥𝑅│𝛥𝑢=0 = ℳ ⋅ 𝜃

𝜃 𝑔, 𝑇 ≈ 𝜃 𝑔, 𝑇0 +
𝜕𝜃

𝜕𝑇0
𝛥𝑇

𝛥𝑟 = ℳ ⋅
𝜕𝜃

𝜕𝑇0
⋅ Δ𝑇 = ℳ ⋅𝒩 ⋅ Δ𝑇

𝑢, 𝑟, 𝑅：为BPM读数，束流位置和BPM中心， 𝜃, 𝑇, 𝑔：校正铁电流，BPM温

度和插入件间隙， ℳ为轨道响应矩阵， ℳ ⋅𝒩为温度响应矩阵

➢ 基于合肥光源的运行历史数据，利用人工神经网络训练温度响

应矩阵模型

➢ 温度变化引起BPM发生位移和形变，从而导致读数错误以及参考轨道的

改变，在轨道反馈系统的作用下，造成束流轨道产生变化

➢ 轨道反馈系统会掩盖束流轨道读数的变化，但会反映在校正磁铁电流值

的变化上

➢ 温度导致束流轨道变化可以用温度响应矩阵描述

Kemin Chen, Faya Wang, Guanliang Wang, Zhe Wang, Masahito Hosaka, Lei Guo and Wei Xu, Beam orbit shift due to BPM thermal deformation using machine learning, 2023 J. Phys.: Conf. Ser. 2420 012014



装置运行性能评估及异常检测（依据关键动力学参数聚类分析）

束流纵向振荡：𝐳 = 𝐳𝐦𝐬𝐢𝐧 𝛀𝐭 + 𝛗𝟎 𝐞
−𝛂𝐬𝐭

束流横向振荡：𝐀 = 𝐀𝐬𝐜𝐨𝐬 𝛚𝒕 + 𝝋𝟎 𝒆−𝜶𝒔𝒕

研究目标：
装置运行状态的精确评估及预警方法探索

方法：
基于束流动力学关键参数的聚类分析

注入过程中束流
动力学参数测量及提取

➢ 可以采用传统方法提取

➢ 也可以采用AI技术

聚类算法评估

聚类分析结果



HLS-II运行状态聚类分析（纵向相位）

 目标：HLS纵向束流状态聚类分析及异常检测

 方法：基于自编码器提取特征并聚类分析及异常检测

 模型方法：AE|PCA|UMAP|DBSCAN|Kmeans++

 数据：以合肥光源多月稳定运行纵向相位数据输入

 后续优化：基于时序-变分自编码器进行异常检测优化

投
票

2025.06-09运行数据分析结果

自编码器从提取原始纵向相位振荡波形数据中提取特征参数

多种方法进行降维

DBSCAN / Kmeans ++聚类分析投票



IRFEL输出辐射功率预测（虚拟诊断）

•结构：全连接神经网络

• 输入层：7840维

• 隐藏层：2560 → 640 → 32神经元

• 激活函数：ReLU

•损失函数（loss）：均方误差

•优化器：Adam (学习率 0.001)

•训练平台：PyTorch + TensorBoard

 目标：FEL光强实时虚拟诊断

 方法：全连接网络与模型解构分析

 模型拆解：参数排序重要性分析

 数据：以红外自由电子激光多探头逐束团参数为输入，
辐射光强为标签

 后续优化：微脉冲功率预测



HLS II束流轨道预测（虚拟诊断）

•结构：全连接神经网络

• 输入层：32维

• 输出层：32维

•损失函数（loss）：均方误差

•优化器：Adam (学习率 0.003)

•训练平台：PyTorch

 目标：HLS II储存环束流轨道虚拟诊断

 方法：全连接网络

 模型拆解：结合轨道响应矩阵

 数据：以HLS II储存环校正铁流强为输入，校正下一步束流轨道为标签

 后续优化：模型结构优化（加入非线性），数据源扩充

模型训练过程
测试集中部分束流轨道（垂直）预测结果

∆𝐵𝑃𝑀𝑖= 𝑏𝑖 +෍

𝑛=1

32

𝑘𝑛
𝑖 𝐶𝑜𝑟𝑛 i为BPM序号，

n为校正铁序号



装置运行参数调优
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直线加速器运行参数调优（强化学习/IRFEL）

Agent:

算法: 强化学习（Actor and Critic）

环境：FELiChEM 与 虚拟环境

优化目标：

Part I   微脉冲横向位置稳定性

Part II  微脉冲横向角度稳定性

Part III 微脉冲能量稳定性

Action: 磁铁电流(𝑴)或磁铁电流变化值(∆𝑴)

State: 束流参数(每个微脉冲的x, y and charge)，磁铁电流(𝑴)等

Actor & Critic算法框图



基于机器学习的工作点反馈（HLS-II）

➢工作点的反馈校正采用 LASSO(Least Absolute Shrinkage and 

Selection Operator) 回归算法生成机器学习模型STM（工作点模

型）

✓ 测量储存环工作点，计算工作点误差

✓ 将该工作点误差送入STM预测四级铁强度改变量

✓ 将该改变量送入当前储存环中，重复以上过程，直到工作点得到修正

在线校正结果

Yong-Bo Yu, Gong-Fa Liu, Wei Xu, Chuan Li, Wei-Min Li, Ke Xuan, Research on tune feedback of the Hefei Light Source II based on machine learning, Nuclear Science and Techniques, 2022, 33(3): 28

与传统方法相比在四极铁的选择以及全局光学参数的控制上更灵活



基于机器学习的光学参数校正（数值仿真）

➢采用神经网络算法实现储存环Beta函数校正

✓ 构建了一种基于改进型遗传算法的神经网络结构优化方法

✓ 降低了神经网络训练过程中参数调整的复杂性，优化了网

络结构

➢ 基于改进遗传算法的神经网络结构优化

✓ 精英保留策略

✓ 基于层次聚类的交叉

✓ 基于强化学习的动态交叉变异概率

Popsize = 100

1

2

3

1

2

3

Popnew(1) Popcopy(任意)

变异

Popnew = 100

有放回的取

Child-new Child

交叉

Popcopy = 100

复制

  精英保留策略

  基于层次聚类
的交叉

  基于强化学习
Q-learning的动态
交叉变异概率

遗传算法改进神经网
络结构（GA-SRBM）

改进遗传算法构件神
经网络（IGA-SRBM）

网络层数 6 3

神经元个数 508 163

均方误差 10-4 10-6

Y.B. Yu, B.W. Ni, K. Xuan, W. Xu, C. Li, G.F. Liu, Neural network structure optimization for Hefei Light Source II beta function correction, Journal of Instrumentation, 2023, 8(9): P09008

Beta beating
Initial 

beating
After GA-SRBM 

correction
After IGA-SRBM 

correction

Max Δ𝛽𝑥 beating 8.65% 0.80% 0.59%

Max Δ𝛽𝑦 beating 1.45% 0.21% 0.05%

改进遗传算法与传统遗传算法在校正𝛽函数上的对比



基于贝叶斯优化的注入参数优化（数值仿真）

Z. Wang, K.M. Chen, T. He, L. Guo, M. Hosaka, G.F. Liu and W. Xu, Bayesian optimization for the local bump injection in the HLS-II storage ring, 2025 J. Phys.: Conf. Ser. 3094 012017

➢使用贝叶斯优化对脉冲磁铁的强度进行优化，不再以单圈闭合轨道匹配为目标，而是以多圈凸轨在整个激励

过程中对存储束流的整体扰动为目标

✓ BO仅用了21步便获得了近似最优解

✓ 注入对存储束流轨道扰动从2.23mm降低至0.279mm

✓ 相对于束流尺寸来说，扰动从109%降低至3%，基本实现了透明注入的目标



结 论
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结论

➢AI技术在大装置建设和运维过程中应用潜力巨大

➢NSRL在此方向上有一些前期的探索工作，但较为零散不成体系，离装置
自动调优和性能优化的总体目标还有较大差距

➢后续将以运行装置为实验平台尽快整合相关研究工作，按总体框架设计
在IRFEL和HLS-II装置上尽快进行技术验证，形成泛化能力强、可快速移
植应用的AI工具包，为HALF的调试和运行奠定技术基础



衷心感谢您的宝贵意见！
敬请批评指正！


