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北京大学在加速器方面的进展
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激光尾波场加速电子

𝛌𝐩 𝛍𝐦 ≈ 𝟑. 𝟑 × 𝟏𝟎𝟏𝟎/ 𝐧𝟎 𝐜𝐦𝟑

Phys. Rev. Lett.122.084801(2019).

𝑬𝟎 =
𝒎𝒆𝒄

𝒆
𝝎𝒑 ≈ 𝟗𝟔 𝒏𝟎 𝒄𝒎𝟑

𝒏𝟎 > 𝟏𝟎𝟏𝟖 𝒄𝒎𝟑

𝑬𝟎 ∼ 𝟏𝟎𝟎 𝑮𝑽/𝒎

20 cm毛细管 7.8 GeV 电子束 30 cm等离子体通道 10 GeV 电子束 24小时10万发次稳定性证明

PRL 133, 255001 (2024) PHYSICAL REVIEW X 10, 031039 (2020)



激光驱动鞘场加速质子/离子

离子不能被激光直接推动，依靠等离子体中电子-离子空间分离静电场来实现加速。
主要机制分为靶后鞘场加速，光压加速和激波加速等。

Nature Physics 20, 1211-1216 (2024)Phys. Rev. Lett. 85, 2945 (2000).

激光加速质子最高 150 MeV

Nature Communication 9：724 (2018)

飞秒激光加速质子最高 94 MeV最早观测到靶背方向出射质子束



国产激光实验室

2PW激光实验室

质子加速靶场

中央控制室 肿瘤辐照实验室

束流传输实验室

激光加速创新中心
◼ 激光加速创新中心:拥有世界上平均功率最高的拍瓦激光器及实验平台



激光加速器运行面临的挑战

1、系统复杂性

激光等离子体相互作用是强非线性、多
尺度、多物理场耦合的现象，解析模型
通常局限于低阶近似，无法准确预测复

杂激光等离子体系统的行为。

2、计算成本

精确的数值模拟需要巨大的计算资源，限制了
其在实时优化和控制中的应用；大型数值模拟
中许多物理过程（如电离、粒子碰撞等）只能

近似处理。

信息不完备 诊断数据不完整，需要从有限观测反演关键
物理量；测量过程中存在信息丢失，导致问
题变得 “不适定”（即解不唯一或对噪声极
敏感）。

实验数据获取速度 / 规模受限，难以及时支
撑实验迭代；同时设备异常的人工排查成本
高、耗时长，易延误实验进度。

4、信息不完备3. 数据与运维效率瓶颈

物理样机

工程样机

产品样机



激光等离子体加速研究范式演变

• 实验室环境的 数字化程度提升—— 控制系统、数据采集、网络传输等技术的发展，让研
究人员能获取海量实验数据（每次实验生成 GB-TB 级的诊断数据），为机器学习提供了数
据基础。

• 激光等离子提作用的 “复杂性”（如参数维度高、物理过程非线性强），传统人工分析已
无法应对复杂数据和多参数优化需求，也推动了自动化数据分析和优化技术的发展 。

传统研究模式

传统模式依赖单发实验和百万核时级

的数据模拟，参数探索有限，难以处

理强非线性、多尺度、多物理耦合问

题。

现代数据驱动模式

现代模式利用高重复频率激光产生海

量数据，数据呈现丰富,为机器学习提

供了新的应用场景，如提供代理模型

降低计算成本，或者解决逆问题提取

隐藏信息。
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建模与预测

仅基于有限的训练
数据(𝑓(𝑥𝑛) = 𝑦𝑛)，
找到真实值的良好
近似𝑓∗ 𝑥 。

逆问题

给定 𝑦和 𝑓（或
近似𝑓∗~𝑓），确
定 𝑥。

性能优化

通过调整机器控
制参数优化性
能——最小或者
最大化目标函数。

基于无监督学习的
数据分析
基于监督学习的图
像分析

数据分析



机器学习在激光加速器中应用总览

正向模型：X → Y预测

反向模型：Y → X预测

优化闭环：目标函数反馈控制

数据分析：模式识别与目标检测预测模型

Andreas Döpp  et al., High Power Laser Science and Engineering  Vol. 11, e55, (2023).



应用一 预测与建模

01

给定输入参数 𝑥𝑛，预测黑
箱函数的输出 𝑓(𝑥𝑛) = 𝑦𝑛 。
其中𝑦𝑛为真实值与随机噪
声成分的组合。

02

电子束/质子束能量预测、

电荷预测、辐射产额预测

、稳定性预测以及模拟结

果加速。

03

经典插值、回归，概率模

型、高斯过程、神经网络

，物理信息网络。

激光等离子体加速优化依赖对高功率激光装置的有限访问，或者需要高性能计算才
能准确建模相互作用过程，其评估需要耗费大量时间、资金或其他资源。寻找成本
相对较低、预测结果可用于深入分析的系统模型（或称为数字孪生 ）具有重要意义。

核心问题 应用场景 建模方法



应用一 预测与建模：深度学习实现激光波前优化

三、Shack-Hartmann 波前传
感器通过测量每个微透镜的
波前斜率来重建整体波前

一、促动器电压设置

（V1…V37） 二、
可变
形镜
调节
改变
波前

四使用Zernike分解算法将波前畸变分解为
Zernike多项式

五进一步的分析和校正

•Z0​：整体相位偏移，不影响波前质量
•Z1​ Z2​倾斜（Tilt）：波前在两个方向上的倾斜
•Z3焦距（Defocus）：波前的聚焦程度。
•Z4​ Z5散光（Astigmatism）：在两个主轴方向上的不对称
•Z6​ Z7​彗差（Coma）：波前的不对称畸变
•Z8​球差（Spherical）：波前的整体非线性畸变



应用一 预测与建模：深度学习实现激光波前优化

三、Shack-Hartmann 波前传
感器通过测量每个微透镜的
波前斜率来重建整体波前

一、促动器电压设置

（V1…V37） 二、
可变
形镜
调节
改变
波前

四解析Zernike多项式
     解析加速电子束的能量/电量信息

五进一步的分析和校正
电子

模型训练：随机森林（Random Forest）
深度神经网络（DNN）
深度联合信息神经网络（ DJINN）
高斯过程（GP）



应用一 预测与建模：深度学习实现加速结果预测

通过使用15个输入神经元、两个隐藏层（每层30个神经元）和一个输出层（3个神经元），模
型能够准确地预测电荷、中位能量和能量展宽。

RPL 126, 174801 (2021)



应用二 逆问题求解

01 02

X-ray 计算机断层扫（CT）
激光波前传感
超快脉冲测量 FROG 
等离子体诊断
束流诊断。。。

03

最小二乘法、梯度下降法、

统计推断（最大似然、贝

叶斯推断）、正则化方法、

压缩感知、深度学习方法

（U-Nets，INN）。。。

➢在实际中也需要解决 “逆问题”—— 根据已知的𝑦 和 𝑓（或近似𝑓∗~𝑓），确定
𝑥。逆问题本质上描述了物理实验中的测量过程和后续对内在属性的反演过程。

➢逆问题的挑战包括解的不唯一性、信息丢失和噪声。

核心问题 应用场景 建模方法

𝐴 𝑥 = 𝑦

A算子也被称为仪器响应、
传感矩阵、传递函数等

已知观测值输入参数



应用二 逆问题求解 基于CS的断层扫描重建

➢ 全光逆康普顿散射（ICS）能实现高亮度、准单能的 X 射线脉冲。激光加速电子束的微焦
点特性使其能够实现高分辨率成像

➢ 在医学成像等领域，减少X射线的曝光时间可以降低患者接受的辐射剂量，具有重要的实际
意义。用全光逆康普顿 X 射线源照射测试物体，仅通过 31 张投影，就用压缩感知重建算
法恢复了物体的内部结构。

鲁巍 Matter Radiat. Extremes 5, 064401 (2020). 



应用二 逆问题求解 深度学习实现激光脉冲重建

➢ 利用深度学习辅助 Shack-Hartmann 波前传感器进行
波前探测。 SHWS波前传感器通过测量每个微透镜的
波前斜率来重建整体波前。由于质心定位误差和平均
波前斜率的计算限制了其精度；波前斜率测量过程较
为复杂，且无法充分利用光斑强度分布中的信息。

➢ 利用ResU-Net强大的特征提取能力、无需质心定位、
斜率测量等中间步骤，直接从光斑强度图案高效提取
多尺度特征，对复杂波前的探测精度更高、鲁棒性更
强。

Lejia Hu et al., Opt. Lett. 45, 3741 (2020). 

➢ 基于卷积神经网络的SHG-FROG光谱图飞秒
脉冲重建方案。训练数据为计算机模拟的
FROG 光谱图，包含振幅和相位完整信息的
光谱域复场作为标签。

➢ 无需人工预处理，毫秒级同时重建振幅和相
位，适应复杂脉冲数据场景。

István Tóth et al., Photonics, 10, 1195 (2024).



应用三 激光加速智能优化

01 02 03

网格搜索、随机搜索、拉

丁超立方采样，基于梯度

方法，遗传算法、贝叶斯

优化，强化学习。。。

➢ 目标函数不清晰、输入维度高、参数多且耦合、评估成本高、发次有限/ 模拟耗
时久、测量噪声高，以及设备安全限制。

➢ 目标存在冲突性：束流电量高→能散大 能量高→加速距离受限。

多目标支持

噪声鲁棒性

目标：帕累托前沿 优化算法算法标准



应用三 不同优化策略应用于激光尾场加速器模拟

（a）首先进行网
格搜索，然后在找
到的局部最优解附
近使用下山单纯形
法进行局部优化

（b）差分进化算法
在找到最大值后开始
探索，而进化算法则
倾向于围绕当前找到
的最优值进行开发。

（c）贝叶斯优化需
要的迭代次数最少。

Andreas Döpp  et al., High Power Laser Science and Engineering  Vol. 11, e55, (2023).



应用三 贝叶斯优化激光质子加速能量

Elias Catrix, et al., Appl. Phys. Lett. 126, 254104 (2025).

利用多步随机森林代理辅助贝叶斯优化方法，实
现对可变形反射镜的自适应控制。从零位可变形
反射镜驱动器电压开始，仅使用 48 个驱动器中
的 20 个，通过不到 150 组实验数据样本便确定
了最优配置。该方法比传统波前校正技术的性能
高出 24%。



应用三 激光加速质子束流传输优化

22

束流动力学代理模型
（提高仿真速度）

⚫ 痛点与目标：

传统束流模拟软件（TraceWin, Elegant, 

MADX等）模拟耗时长，难以实时预测。

⚫ 核心方法：

建立基于编码器-解码器架构的序列到序

列模型。

⚫ 成果：

精度和泛化能力优于基线模型MLP。

支持NSGA-II等多目标自动优化，缩短束

流动力学优化时间。

输入实验/调研的名称 束流相空间重构
（反演入口束流信息）

误差分析代理模型
（评估系统鲁棒性）

⚫ 背景：

引入真实运行条件下（即各类误差）的

加速器状态，进行束流动力学建模。

⚫ 误差项建模：

静态误差（均匀分布）+ 动态误差（3σ

截断高斯分布）。

⚫ 应用价值：

确定误差容限，指导束流调试。

⚫ 挑战：

激光加速出的质子散角大、能散大，束

流品质的优劣直接决定能否进行后续传

输。

⚫ 核心方法：

建立基于ASA-PSR自适应结构感知方法重

构出入口的束流6维相空间信息。

⚫ 优势：

反演出入口束流信息，可用于动力学模

拟。该方法较MLP模型收敛更快、保真度

更高。

磁铁序列

Encoder

(双向LSTM)

探测器序列

Decoder

（单向
LSTM）

误差分析模型

正向评估

（敏感性分析）

逆向反演

（束流调试）

张旭 北京大学 报告



应用三 贝叶斯优化等离子体束流调控方法

满来福北京大学

物理约束 + ML 形状优化方法，最大化束流收集效率

• 引入贝叶斯优化，高效探索高维参数空间

• 处理非线性效应，结果鲁棒性和适定性强，微扰
不敏感

• 导出 APL 的自相似解，提出与应用跨尺度
Scaling Law

北京大学团队首次总结并验证主动等离子体透镜（APL）束流动力学原理，提出变半径 APL 设计，
最大化磁场区域利用率。该方法为下一代紧凑型粒子加速器与束流装置的高性能、小型化设计提
供了新思路，适用于激光加速器，缪子对撞机、紧凑型光源等前沿装置。

小/大发射度束流APL聚焦比较
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强化学习：动态和不可预测系统中实现控制和优化



应用三 强化学习优化激光加速质子束剂量沉积

25

结合强化学习，可以显著提高辐照效率， 减少按照计划进行辐照所需的辐照发次。

束流最大波动到达 50% ，不稳定性可以控制在3%，所用辐照时间仍然优于标准时长。

利用改变胡椒板大小径实现束流
电量的在线调节，同时通过优化
算法实现后续束线的优化，保证
辐照点位束斑轮廓和分布不变。

陈可北京大学



应用四 数据分析

01 02无监督学习 监督学习

➢无监督学习是在不预设结论的前提下，从原始数据中挖掘隐藏规律，发现数据特征之间的

内在关系—— 例如激光能量与等离子体密度的相关性。

➢监督学习多用于分析激光加速实验中常见图像数据：等离子体阴影图、X 射线成像、束流

光斑分布等，需要实时的图像识别 / 分类、目标检测和分割。

分类 ： CNN/ResNet/SVM，识别出激光
等离子体中各类结构

目标检测：YOLO/Faster R-CNN，识别复
杂图像中多个不同特征的目标

分割：U-Ne t像素级的标签映射。。。

聚类：K-means/GMM，有效信号分离、
分类实验/异常检测；

相关性分析：找出与实验目标强相关的输入
参数，发现潜在规律；

降维：PCA/AE，数据压缩、关键参数删选、
特征提取、可视化分析。。。



应用四 数据分析 基于无监督学习的数据分析

电子能谱背景区分：使用混合模型（GMM）
将谱峰值分离出来去拟合，然后将能谱的每
个区间以一定概率分配给某个高斯分布 —
— 最终每个分布对应一个独立的峰值。

相关性分析：当有多个参数时（如激光能量、
脉宽、等离子体密度、束流能量），相关矩阵
能一次性展示所有参数对的相关系数

F. Irshad et. al., RPL 133, 085001 (2024) A. Hsu et al., Phys. Plasmas 27, 012703 (2020). 



激光加速图像处理：
➢等离子体图像诊断

➢激光光斑异常检测

➢激光参数的快速反演

➢粒子探测器信号提取

➢靶体快速定位

➢实验人员识别。。。

应用四 数据分析 基于监督学习的图像分析

High Power Laser Science and Engineering, 2019, 7: e66.
High Power Laser Science and Engineering, 2023, 11: e7.
Optica, 2018, 5(5): 666-673.
Plasma Physics and Controlled Fusion, 2021, 63(11): 114003.
郭臻，北京大学， Nuclear Instruments and Methods in Physics Research A 1066 169641(2024) .



应用四 数据分析 质子束治疗计划系统（TCS）

陈嘉炜 北京大学 报告
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➢ 激光等离子体加速在近年来取得显著进展，束流质量持续提升，为科研、医
学、材料等领域应用奠定基础。

➢ 激光加速器的优化属于“高成本黑盒问题”。随着实验数字化进程、数据量
激增、GPU算例提升，以及实验复杂性提升、以及对自动化技术的需求，
机器学习技术在激光加速中的应用变得日益重要且广泛。

➢ 本报告介绍了机器学习在“建模预测、逆问题求解、加速优化和数据分析”
这四方面的初步应用。通过将贝叶斯优化、强化学习与实验装置结合，初步
实现了加速参数的实时动态调整。

➢ 提升数据质量，多模态数据融合，模型可解释性与可信度，以及从模拟验证
到实验的迁移落地是核心的关键技术。

总结
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衷心感谢，敬请指正！

感谢：
➢ 北京大学激光质子刀团队！
➢ 所有合作单位和老师们！
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