
报告人：田园
中国科学院近代物理研究所

直线加速器中心

GPU高性能加速器仿真程序设计



主要内容

Ø图形处理器GPU与CUDA

Ø基于GPU的AVASX加速器多粒子程序设计与优化

ØAVASX的测试与验证



1. 图形处理器GPU与CUDA



• Graphics Processing Units，图形处理器

• GPU诞生之初的作用：将数字化的三维立体图形经过顶点计算、着色计算后，最终获得由二维离散

像素组成的图像，并显示在显示设备上。

Perspective projection Orthographic projection



• 为什么GPU计算速度比CPU要快？

1981 1992 2001 2009 2015

• 对游戏画质的追求，推动了GPU的快速发展，如果处理不够快，就只能看幻灯片~

VS.
• 低计算密度；

• 复杂逻辑控制；

• 大缓存；

• 低访存延迟；

• 高计算密度；

• 高数据吞吐量；

• 深流水线；

• 高访存延迟；



• 从管线式GPU到统一渲染GPU

管线式GPU架构：
• 1999 ~ 2005；

• 硬件T&L（Transforming & Lighting）；

• 顶点着色器与像素着色器分离；

• 不灵活，难以平衡顶点运算需求和像素运算需求；

统一渲染架构GPU：
• 2006 ~ 至今；

• 硬件T&L（Transforming & Lighting）；

• 不再分离顶点着色器与像素着色器，统一为shader着色

器；

• 非常灵活，shader可编程，既能用于顶点运算也能用于

像素运算；

• GPU可编程、可科学计算的基础；



• Compute Unified Device Architecture，CUDA



• CUDA的线程组织和执行



• CUDA的内存系统

内存系统 存储位置 是否缓存 访问延迟 作用域

寄存器 on chip N/A 极低 thread

本地内存 off chip no 高 thread

共享内存 on chip N/A 低 block

常量内存 off chip yes 高 grid

全局内存 off chip yes 高 grid

纹理内存 off chip yes 高 grid

全局内存合并访问，内存带宽利用率高，访存延迟小

非合并访问，带宽利用率低，访存延迟高



3. 基于GPU的AVASX程序设计



• GPU加速器多粒子仿真算法概述

• 一维Grid（Block在x方向排列）、一维Block（线程在x方向排列）、线程与粒子一一对应。

• 二维Grid、一维Block（线程在x方向排列）、线程与PIC网
格点一一对应。



• 电荷沉积

• 存在问题：在GPU并行计算模式下，多个线程将沉积电荷写入相同PIC格点，存在内存竞争写入

问题，需要使用互斥的atomicAdd原子加法操作，大量线程执行原子操作会降低并发度（串行

化执行），从而降低电荷沉积的计算性能。



• 线程冲突优化策略1：warp线程聚合

• warp线程聚合：将warp内线程按粒子所在网格分组，每组指派一个收集线程，收集组内其他

线程的分配电荷，最终仅由收集线程执行原子操作，从而减少原子指令数。



• warp线程聚合：收集线程选定与电荷收集

• 线程聚合实现方案：（1）使用__shfl_up_sync线程洗牌函数，在每个分组中筛选出来一个收

集线程；（2）使用__shfl_down_sync洗牌函数，由每个收集线程收集同组线程数据。



• 线程冲突优化策略2：多PIC网格内存副本

• 多PIC网格内存副本：按照block内部的warp数量，在全局内存上分配多个网格点内存副本，

将不同的内存副本指派到不同的warp，从而降低warp之间的内存写入冲突。



• 线程冲突优化策略3：block数据处理范围发散

• 数据处理范围发散：改变同一批次被调度的block的数据处理范围，使得被调度block之间的粒

子不再位于相邻网格，从而降低内存写入冲突。



• 空间电荷场求解：PICNIC

• 需求分析：非周期边界（开放边界）的空间电荷效应求解，例如大能散仿真、多束团仿真；
• 算法依据：根据库仑定律，任意PIC格点电势都是由其他格点电荷在该点产生的电势积分得到（如上公式所示）；
• 算法难点：在三维模拟中，积分求解空间电荷场需要六重循环，时间复杂度为O(N6)，相较于FFT求解器的时间复杂度

O(NlogN)，PICNIC算法是一种高计算负载且低计算效率的方法，严重制约了该方法在仿真中的应用；

根据GPU计算架构特点，设计了并行PICNIC算法，优化GPU全
局内存的合并访问，降低访存的延迟

提出了计算对称性优化方法，利用GPU共享内存降低内存的冗余
访问，减少循环次数



• 外场内存布局优化

• 外场内存布局优化：使用float6 {Bx, By, Bz, Ex, Ey, Ez}自定义数据结构保存外场数据，提高

全局内存访问带宽利用率。



• 粒子推进

• 多种推进模式：支持全t-code推进、全z-code推进和t-code、z-code动态切换推进；

• 元件误差模拟：在t-code推进模式下，支持元件的平移、旋转等误差模拟；

• 叠加场模拟：在t-code推进模式下，支持多个外场叠加模拟；



4. AVASX的测试与验证



• GPU加速的PICNIC算法校验

Method
Emittance (π·mm·mrad) Bunch size (mm)

Energy (MeV)
Emitx Emity Emitz Sizex Sizey Sizez

AVAS 0.537 0.671 0.298 1.763 3.057 0.833 630.547

AVASX 0.543 0.662 0.298 1.773 3.026 0.833 630.547

AVAS，PICNIC

AVASX，PICNIC

Grid point 

dimensions

Per step durations of PICNIC on CPUs & GPUs

CPU 1T (ms) CPU 56T (ms) GPU (ms) GPU optimized (ms)

24 × 24 × 24 277 13 0.27 0.20

32 × 32 × 32 1546 45 0.65 0.44

48 × 48 × 48 19549 528 4.41 2.28

64 × 64 × 64 109919 3326 23.26 10.46



• AVASX的仿真结果校验——CAFe

Code Particle number
Emittance (π·mm·mrad) Bunch size (mm)

Energy (MeV)
Emitx Emity Emitz Sizex Sizey Sizez

AVASX
1,000,000 0.148 0.152 0.134 1.585 1.486 0.914 16.950

10,000,000 0.149 0.152 0.134 1.585 1.486 0.914 16.950

AVAS
1,000,000 0.148 0.152 0.134 1.584 1.485 0.914 16.950

10,000,000 0.149 0.152 0.134 1.584 1.486 0.914 16.950

• CAFe（Chinese ADS Front-end Demo Linac）仿真测试：初始束团能量1.36 MeV，流强

0.27 mA，频率162.5 MHz。

1,000,000 particles 10,000,000 particles



• AVASX的仿真结果校验——CiADS

• CiADS（China initiative Accelerator Driven System）仿真测试：初始束团能量2.1 

MeV，流强5.0 mA，频率162.5 MHz。

Code Particle number
Emittance (π·mm·mrad) Bunch size (mm)

Energy (MeV)
Emitx Emity Emitz Sizex Sizey Sizez

AVASX
1,000,000 0.216 0.222 0.225 1.216 1.521 0.863 630.576

10,000,000 0.216 0.222 0.225 1.216 1.522 0.862 630.570

AVAS
1,000,000 0.216 0.222 0.225 1.214 1.524 0.870 630.575

10,000,000 0.216 0.222 0.224 1.215 1.525 0.869 630.574

1,000,000 particles 10,000,000 particles



• 误差分析、叠加场元件测试

CAFe叠加场, AVAS

CAFe叠加场, AVASX

叠加场二极铁, AVAS

叠加场二极铁, AVASX

误差模拟, AVAS

误差模拟, AVASX



• 外场内存布局性能测试

• kernel-1：外场以SOA（structure of arrays）布局存储

• kernel-2：外场以AOS（array of structures）布局存储

Employed 
kernel

Threads to L1 cache L1 cache to L2 cache L2 cache to device memory
Duration 

(us)Memory 
requests

Requested 
sectors

Hit rate 
(%)

Memory 
requests

Requested 
sectors

Requested 
sectors

Requested 
bytes

kernel-1 2,812,500 6,008,627 80.95 300,060 1,144,828 1,125,396 36,012,672 101.25

kernel-2 1,656,250 4,501,828 74.77 290,704 1,135,932 1,125,176 36,005,632 86.72

Employed kernel Duration per step (us)
Computing performance

 (Giga particles per second)
Performance improvement (%)

kernel-1 523.720486 1.909415 -

kernel-2 516.982222 1.934302 1.30

表1. kernel-1与kernel-2在加载外场时，L1缓存、L2缓存、device内存的访存请求数以及内核执行时间

表2. kernel-1与kernel-2在对CAFe仿真性能的影响



• 电荷沉积内核性能分析结果

Employed 
kernel

Runtime
options

Threads to L1 cache Excessive 
sector rate

 (%)

Compute 
throughput 

(%)

Memory 
throughput 

(GB/s)

Duration 
(us)

Performance 
improvement

 (%)Memory 
requests

Requested 
sectors

Hit rate 
(%)

kernel-3 不排序、无优化 250,000 7,832,161 0% 9.90 6.92 51.96 463.01 -

kernel-4 不排序、仅聚合 250,016 7,814,976 0% 9.90 14.31 51.96 463.74 - 0.16

kernel-5 不排序、聚合+发散范围 251,904 7,822,528 0% 9.90 14.37 52.07 463.49 - 0.10

kernel-6 不排序、仅内存副本 250,000 7,832,737 0% 9.90 7.55 56.82 426.50 8.56

kernel-7 仅排序、无优化 250,000 7,869,016 0% not provided 5.87 19.48 1230.00 - 62.36

kernel-8 排序、聚合 250,016 997,324 0% 0.01 29.95 167.78 143.55 222.54

kernel-9 排序、聚合+发散范围 251,904 1,004,876 0% 0.01 56.05 307.71 78.40 490.57

kernel-10 排序、聚合+内存副本 250,016 997,324 0% 0.01 45.79 250.32 96.67 378.96

kernel-11 排序、所有优化策略 251,904 1,004,876 0% 0.01 64.63 356.47 68.06 580.30



• GPU仿真程序与CPU仿真程序性能对比

测试环境和设备：
• CPU设备：双路28核Intel Gold 6330处理器，最多使用

56核计算

• GPU设备：NVIDIA Tesla A100-PCIe 40GB

• PIC网格数：128 × 128 × 128， 256 × 256 × 256

• 测试束线：CAFe、CiADS

5万 50万

5000万500万

5万 50万

5000万500万

Code

Simulation durations (s)

1,000,000 particles 10,000,000 particles 100,000,000 particles (8 GPUs) 500,000,000 particles (8 GPUs)

CAFe CiADS CAFe CiADS CAFe CiADS CAFe CiADS

AVASX 16.58 45.98 70.87 222.24 52.42 243.09 324.55 1499.73

AVAS 7832.72 25331.75 12359.02 39188.10 -

Speedup 472.42 550.93 174.39 176.33 - - - -



谢谢


