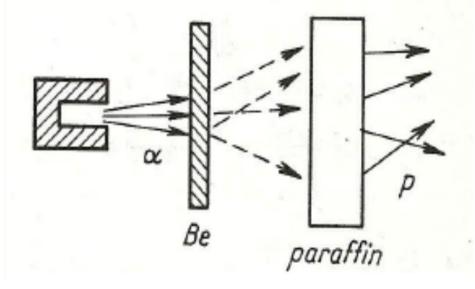


Beta-delayed neutron emission for very neutron-rich nuclei

Youbao Wang China Institute of Atomic Energy

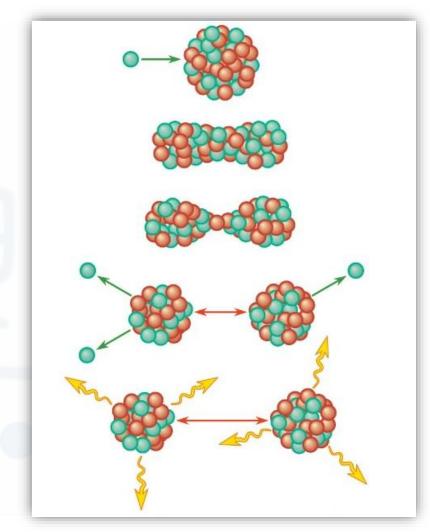
HIAF Collaboration Meeting, Huizhou Sept. 5, 2025

- Introduction
- Experimental method
- Neutron counter arrays
- LHENA@BRIF
- Future plan @HIAF
- Summary


Neutron and neutron induced fission

Possible Existence of a Neutron

J. Chadwick


Nature **129**, 312 (1932) Cite this article

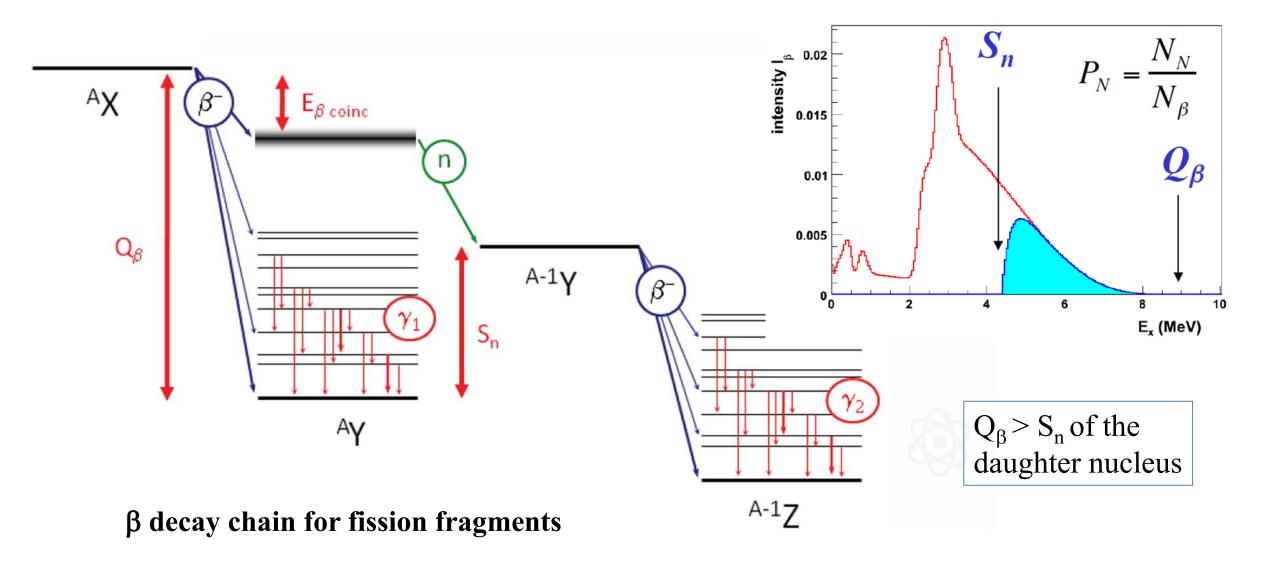
14k Accesses | 392 Citations | 137 Altmetric | Metrics

- Marks the modelling of nucleus in protonneutron constitution
- Provides a powerful tool to new discoveries and significant applications
- Such as fission in 1938

Delayed Neutron emission in fission

664

LETTERS TO

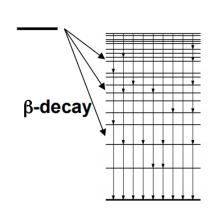

The Delayed Neutron Emission which Accompanies Fission of Uranium and Thorium

In our previous letter¹ we suggested that the delayed neutrons produced by neutron bombardment of uranium might originate either in direct neutron emission (by one of the disintegration products), or in a photodisintegration process. Further evidence has now been obtained which indicates that direct neutron emission is responsible for the delayed neutrons which we observed.

R.B. Roberts, L.R. Hafstad, R.C. Meyer, P. Wang, The Delayed Neutron Emission which Accompanies Fission of Uranium and Thorium, Phys. Rev. 55 (1939) 664.

Beta delayed neutron emission probability Pn

Beta delayed neutron in fission


Average number of delayed neutrons per fission

Fissioning system	$^{233}\mathrm{U}(\mathbf{n}_t,\mathbf{f})$	$^{235}\mathrm{U}(\mathbf{n}_{th},\mathbf{f})$	239 Pu(\mathbf{n}_{th} , \mathbf{f})	241 Pu(\mathbf{n}_{th} , \mathbf{f})
$< v_d > $ (Integral)	6.73E-03	1.62E-02	6.50E-03	1.60E-02
$< v_d > (\mathbf{Sum})$	7.24E-03	1.48E-02	6.05E-03	1.23E-02
Diff. (S–I)/I	+8%	-9%	-7%	-23%
Fissioning system	242m Am(\mathbf{n}_{th} , \mathbf{f})	243 Cm(\mathbf{n}_{th} , \mathbf{f})	245 Cm(\mathbf{n}_{th} , \mathbf{f})	
$< v_d > $ (Integral)	6.50E-03	3.01E-03	6.40E-03	
$< v_d > (\mathbf{Sum})$	5.82E-03	2.21E-03	5.26E-03	
Diff. (S–I)/I	-11%	-27%	-18%	

M.A. Kellett et al. JEFF Report 20, NEA No. 6287, 2009

Basics of beta decay from experiment

Fermi / Gamow-Teller:

$$B_{i\to f} = \left| \left\langle \Psi_f \middle| \tau^{\pm} \text{ or } \sigma \tau^{\pm} \middle| \Psi_i \right\rangle \right|^2$$

Strength function

Beta feeding

Fermi function
$$S_{\beta}(E) = \frac{I_{\beta}(E)}{f(Q_{\beta} - E)T_{1/2}}$$

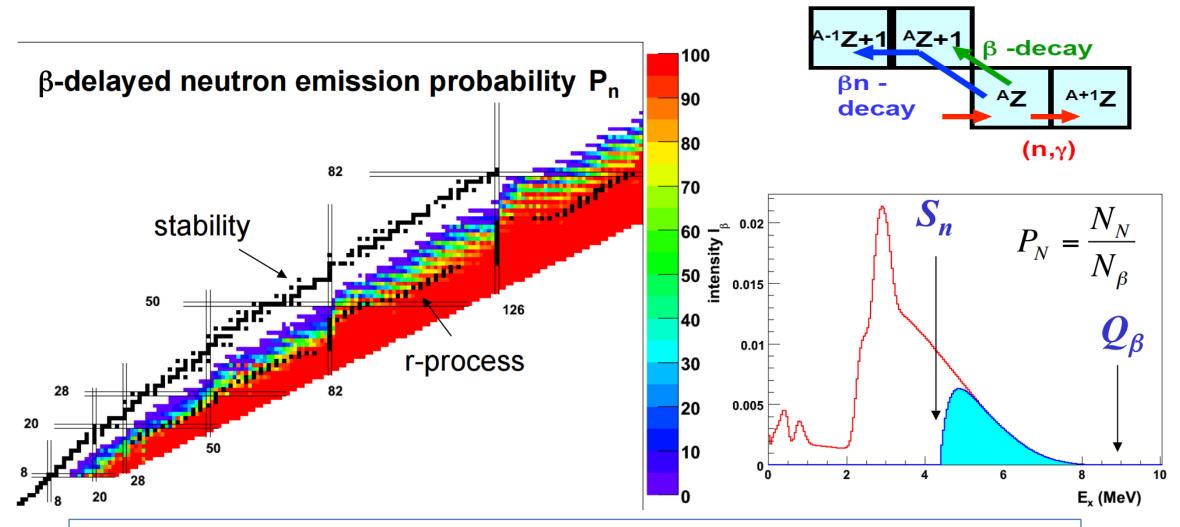
→ Half life of parent

Relationship

$$S_{\beta} = \frac{1}{6147 \pm 7} \left(\frac{g_A}{g_V}\right)^2 \sum_{E_f \in \Delta E} \frac{1}{\Delta E} B_{i \to f}$$

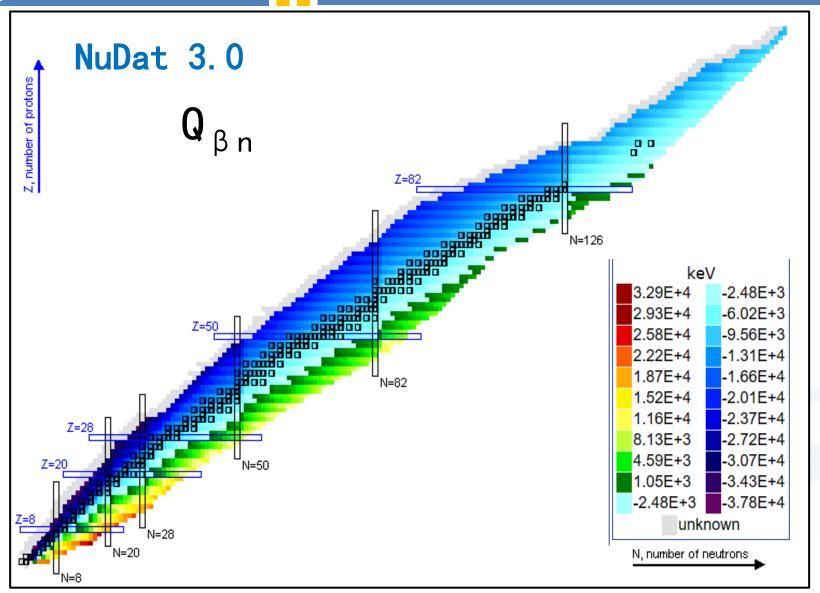
Basics of beta decay from Pn values

The (inverse of the) half-life $T_{1/2}$ is a weighted average of the β -strength S_{β}


The neutron emission probability P_n measures the P_n = fraction of β -strength above the neutron separation energy S_n

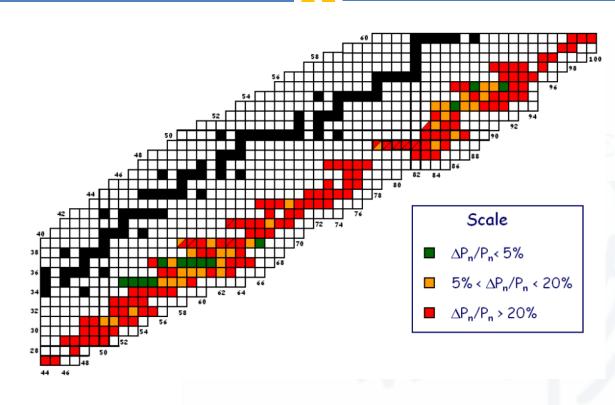
$$\frac{1}{T_{1/2}} = \int_{0}^{Q_{\beta}} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) dE_{x}$$

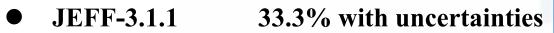
$$P_{n} = \frac{\int_{S_{n}}^{Q_{\beta}} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) \frac{\Gamma^{n}}{\Gamma^{n} + \Gamma^{\gamma}} dE_{x}}{\int_{0}^{Q_{\beta}} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) dE_{x}}$$


P_n for very neutron-rich nuclei

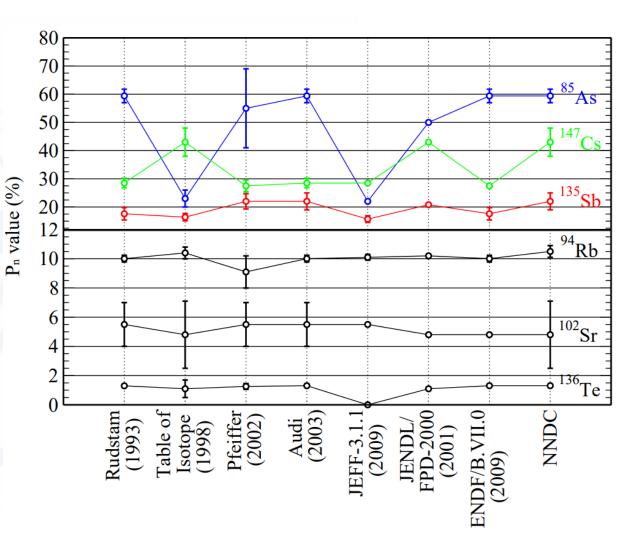
To understand nuclear structure and r-process relies on the knowledge of beta-delayed neutrons

Beta delayed neutron emitters




Model predicts:

- About 665 β_{1n} emitters with $Q_{\beta 1n} > 0$
- About 325 β_{2n} emitters with $Q_{\beta 2n} > 0$
- About 138 nuclei with $Q_{\beta 3n} > 0$ and 58 nuclei with $Q_{\beta 4n} > 0$



Deviation in available Pn data

- ENDF/B-VII.0 only 7%
- JENDL/FPD-2000 only 1%

Ivan Borzov Daniel Cano

Satoshi Chiba

Iris Dillmann

Muriel Fallot

Paul Garrett

Robert Grzywac

Xiaolong Huang

Tomislav Marketin

Robert Mills

Futoshi Minato

Gopal Mukherjee

Vladimir Piksaikin

Krzysztof Rykaczewski

Balraj Singh

José L. Tain

Alejandro Algora

Tim Johnson

Libby McCutchan

Alejandro Sonzogni

The CRP on beta-delayed neutron emission data

CRP Objective

The overall CRP Objective is to enhance Member States' (MS) knowledge and calculational capabilities in the fields of nuclear energy, safeguards, used fuel and waste management and nuclear sciences by creating a Reference Database for Beta-Delayed Neutron Emission that contains both a compilation of existing data, evaluated data and recommended data, which will be made readily available to the user community. The project starts in 2013 and will have a duration of 4 years.

Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Half-Lives for Z > 28 Precursors. J. Liang *et al.* Nuclear Data Sheets 168, 1–116(2020).

Progress in Pn data

Nucleus	Proportion of all DN	$\Delta \mathbf{P}_n / \mathbf{P}_n$
¹³⁷ I	13 to 40%	8%
^{98m}Y	5 to 16%	30%
⁹⁴ Rb	7 to 12%	5% ²
¹³⁸ I	4 to 10%	7%
¹³⁵ Sb	0.3 to 3%	30%
⁹⁹ Y	2 to 4%	$20\%^{-3}$
¹⁰⁵ Nb	0.2 to 2%	50%
⁹¹ Br	0.5 to 2%	15% ²
¹³⁶ Te	0.6 to 1.7%	$100\% ^{4}$
^{140}I	0.1 to 1.3%	$10\%^{2}$
¹³⁷ Te	0.2 to 1.5%	5% ³
⁸⁵ As	0.8 to 3%	60%
⁸⁶ As	0.2 to 1%	$12\%^{2,3}$

表1 核能应用需要精确测量的 β 延迟中子发射核。延迟中子占比取决于不同的裂变系统。

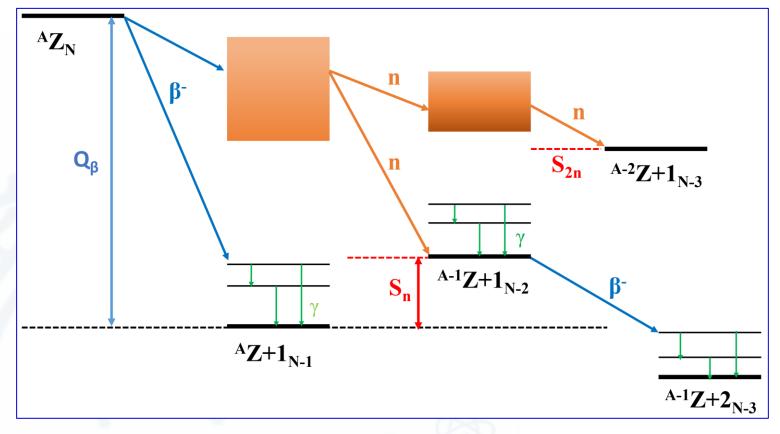
核素	半衰期(秒) ^[a]	$P_n^{[a]}$	$\Delta P_n/P_n$	$<_{n_{di}}>/<_{n_{d}}>$
¹³⁷ I	24.59(10)	7.63(14)	1.8%	13-40%
98mY	2.32(8)	3.44(95)	27.6%	5 - 16%
⁹⁴ Rb	2.704(15)	10.39(22)	2.1%	7 - 12%
¹³⁸ I	6.251(31)	5.30(21)	4.0%	4 - 10%
99Y	1.478(7)	1.97(30)	15.2%	2 - 4%
¹³⁵ Sb	1.668(10)	20.0(29)	1.5%	0.3 - 3%
85As	2.023(7)	62.5(10)	0.2%	0.8 - 3%
¹⁰⁵ Nb	2.91(7)	1.7(9)	52.9%	0.4-2%
⁹¹ Br	0.544(10)	30.4(14)	0.5%	0.5 - 2%
¹³⁶ Te	17.67(9)	1.37(5)	3.6%	0.6 - 1.7%
¹³⁷ Te	2.50(5)	2.91(16)	5.5%	0.2 - 1.5%
¹⁴⁰ I	0.590(16)	7.88(43)	5.5%	0.1 - 1.3%
86As	0.944(10)	34.5(9)	2.6%	0.2 - 1%

M.A. Kellett et al. JEFF Report 20, NEA No. 6287(2009)

J. Liang et al. Nuclear Data Sheets 168, 1–116(2020)

Experimental methods to measure Pn

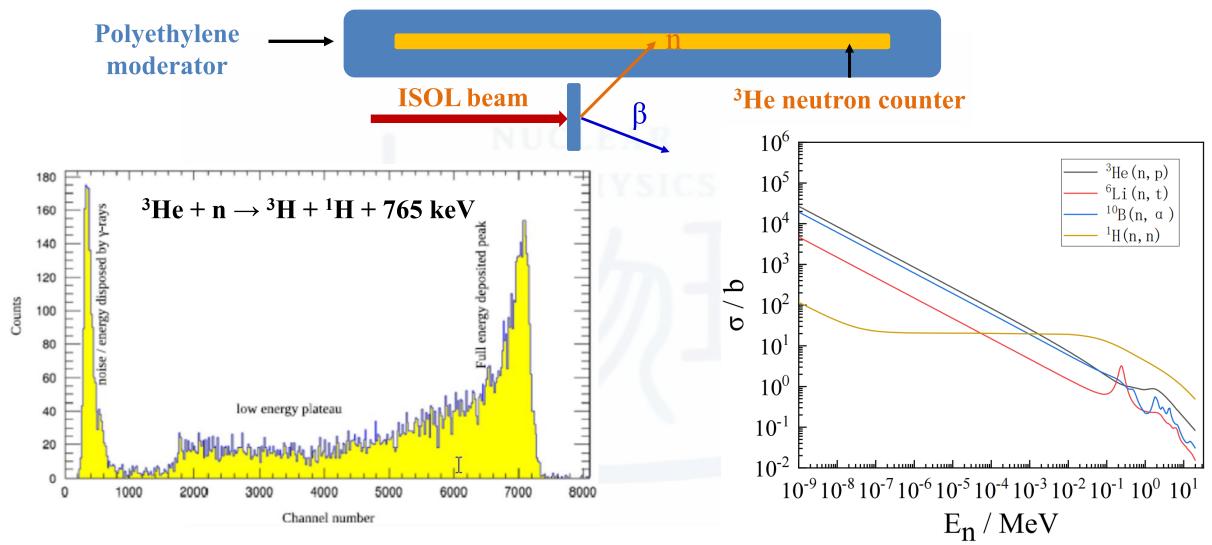
1) Ion counting


$$P_n = \frac{N_n}{N_{ion}\varepsilon_n}$$

2) Neutron-beta coincidences

$$P_n = \frac{N_{n-\beta}\varepsilon_{\beta}}{N_{\beta}\varepsilon_{n-\beta}} = \frac{N_{n-\beta}}{N_{\beta}\varepsilon_n}$$

3) Combined with γ rays

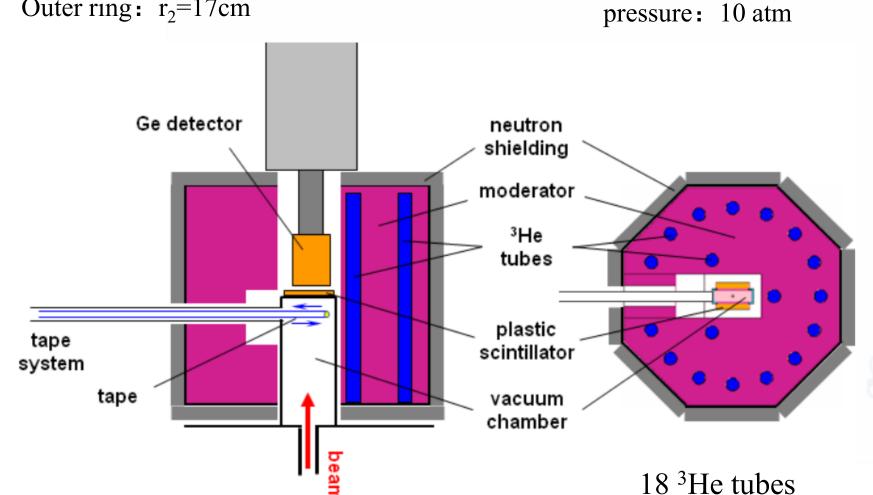

$$P_{\rm n} = \frac{N_{n}}{N_{\gamma}} \cdot \frac{B_{\gamma} \varepsilon_{\gamma}}{\varepsilon_{n}}$$

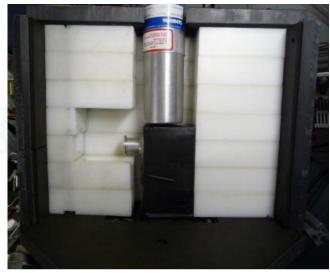
- Neutron detector are hard to calibrate
- None flat efficiency for neutron and β detectors
- \blacksquare Neutron and huge β background induced ambiguities

Principle of ³He neutron counter

Neutron lose much of their energy and time information in the process of thermalization

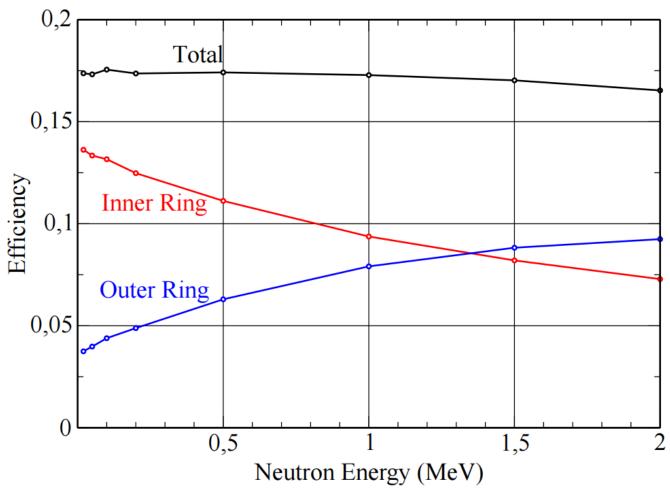
Known ³He neutron arrays

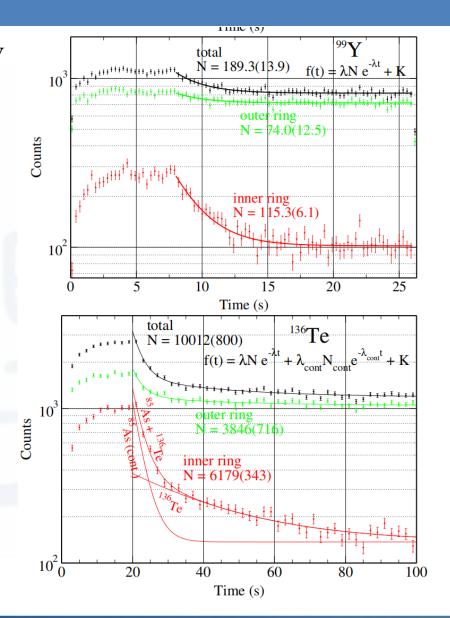

Facility	RIB	Neutron array	Isotopes for example	References
LOHEN GRIN	ISOL	ISOL LOENIE 99Y, 136Te		JINST 7 (2012) P08029
ORSAY- ALTO	ISOL	TETRA	^{81,82} Ga	NIM A815 (2016) 96
ORNL	ISOL	VANDLE	^{83,84} Ga	NIM A836 (2016) 122 PRL 117 (2016) 092502
GSI-FRS	Projectile fragmentation	BELEN-30	^{210,211} Hg, ²¹¹⁻²¹⁶ Tl	PRL 117 (2016) 012501
BigRIPS	Projectile fragmentation	BRIKEN	81,82,84-87Ga, ⁸⁰ Zn	NIM A925 (2019)133 PRC 100 (2019) 031302(R)


LOng-counter with ENergy Independant Effificiency (LOENIE)

Inner ring: r_1 =8cm
Outer ring: r_2 =17cm

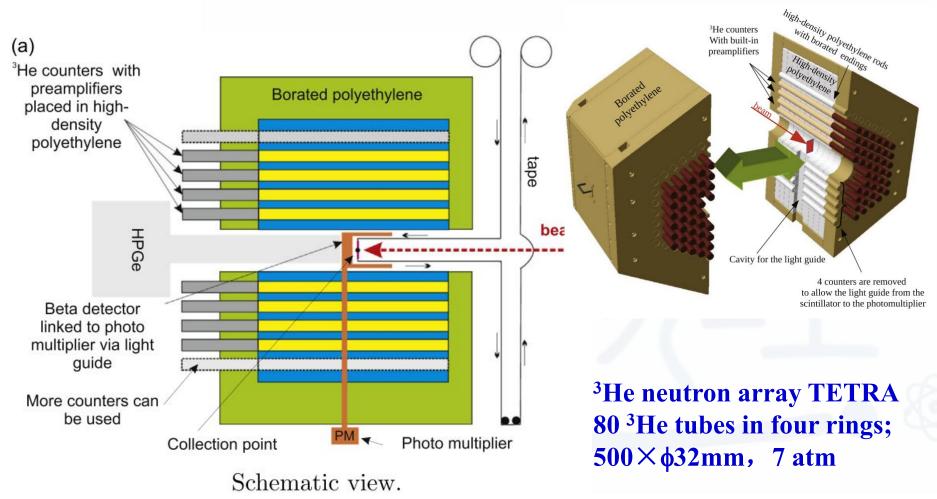
3He tube: pressure:





Performance of LOENIE

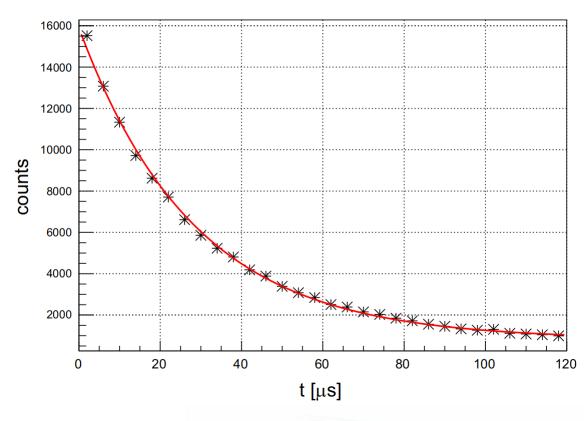
Calibration: constant efficiency is achieved of $23.1 \pm 0.3\%$ for 0-1 MeV

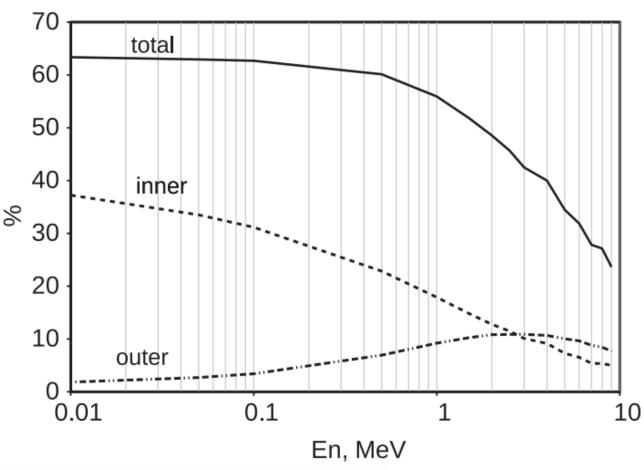


MCNP Simulation:17%, 6% difference!



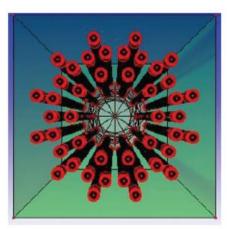
The ³He long-counter TETRA @ ALTO ISOL facility

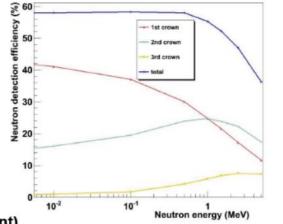

(b)


Overview of the setup.

Performance of TETRA

Time difference between two consecutive neutrons emitted in spontaneous fission of 252 Cf Thermalization: typically less than 200 μs

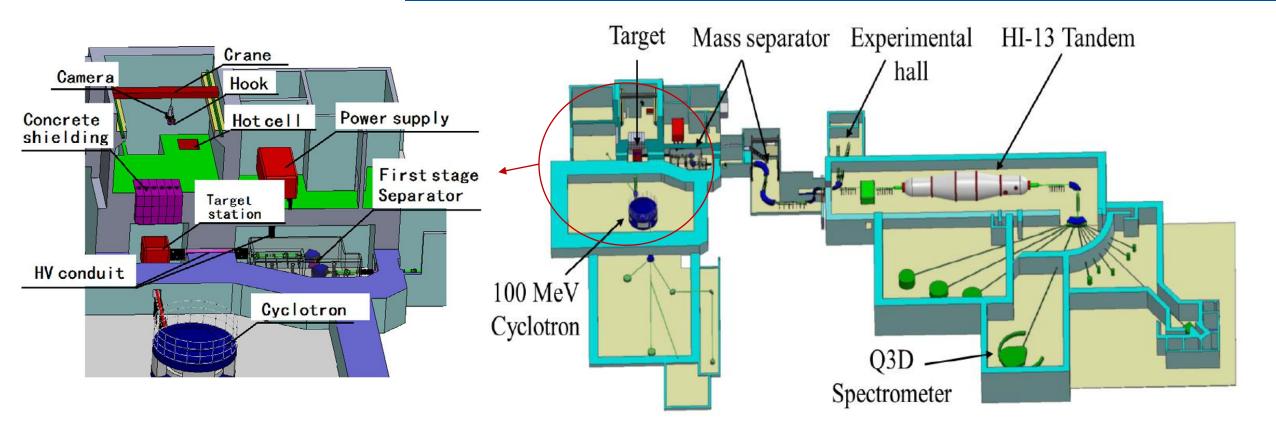

NIM A 815 (2016) 96–103



BEta deLayEd Neutron detector (BELEN)

BELEN progression

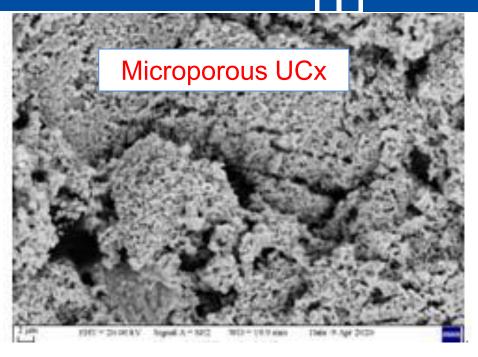
The original planned neutron detector for DESPEC consists of 44 ³He counters arranged in 3 crowns. To be combined with AIDA, but ...


- 40 counters @ 10 atm UPC (refurbishment)
- 10 counters @ 10 atm GSI
- 60 counters @ 4 atm JINR

Hyperfine Interact ((2014)	223:185–194

	Experiment	Theory	Experiment	Theory
⁹⁴ Kr	0.3 ± 0.1	0.44		0.55
99 Y	1.48 ± 0.02	0.93	2.5 ± 0.5	3.7
100gY	0.71 ± 0.03	0.29	1.8 ± 0.6	0.9
$101\mathrm{Y}$	0.40 ± 0.02	0.14	1.5 ± 0.5	1.4
102gY	0.29 ± 0.02	0.18	4.0 ± 1.5	1.6
$103\mathrm{Y}$	0.23 ± 0.02	0.08	8 ± 3	4.6
^{104}Y	0.18 ± 0.06	0.035		
^{105}Zr	0.6 ± 0.1	0.095		0
104gNb	5.0 ± 0.4	2.07	0.06 ± 0.03	0
105 Nb	2.8 ± 0.1	2.73	1.7 ± 0.9	0.26
106Nb	0.9 ± 0.02	0.15	4.5 ± 0.3	0.27
¹⁰⁷ Nb	0.30 ± 0.03	0.45	6.0 ± 1.5	3.7
¹⁰⁸ Nb	0.19 ± 0.02	0.23	6.2 ± 0.5	11
109Nb	0.19 ± 0.03	0.28	31 ± 5	26
¹¹⁰ Nb	0.17 ± 0.02	0.19	40 ± 8	20
¹⁰⁹ Tc	0.8 ± 0.1	0.42	0.08 ± 0.02	0.02
¹¹⁰ Tc	0.78 ± 0.15	0.25	0.04 ± 0.02	0.075
¹¹¹ Tc	0.29 ± 0.02	0.235	0.85 ± 0.2	0.53
¹¹² Tc	0.29 ± 0.02	0.26	1.5 ± 0.2	1.1
¹¹³ Tc	0.17 ± 0.02	0.13	2.1 ± 0.3	
¹¹⁴ Tc	0.15 ± 0.03	0.08	1.3 ± 0.4	

Upgrade for RIBs@CIAE



- ◆ 100 MeV proton cyclotron, Kilowatt Target-Ion Source assembly
- Charge Exchange cell + high-resolution ISOL
- **♦** HI-13 Tandem for post acceleration

Recent Beam development @BRIF

RNB

37,38,43,45,47**K** Surface IS CaO 20,21,22,24,25**Na** Surface IS MgO ¹⁶N, ²⁷AI, ²⁰⁻²⁵Na SiC **FEBIAD** ⁸⁸Rb, ⁹⁰Rb, ¹⁴⁰Cs, ¹⁴²Cs UCx **FEBIAD**

Progress in Particle and Nuclear Physics 145 (2025) 104188

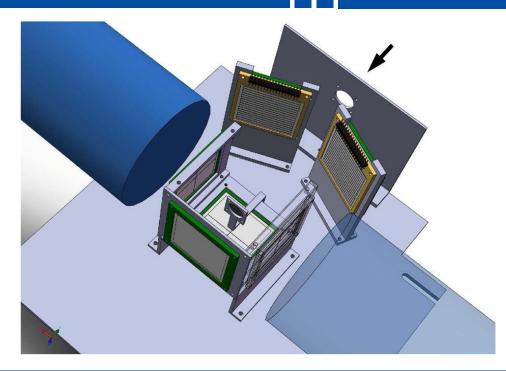
Ion source

Target

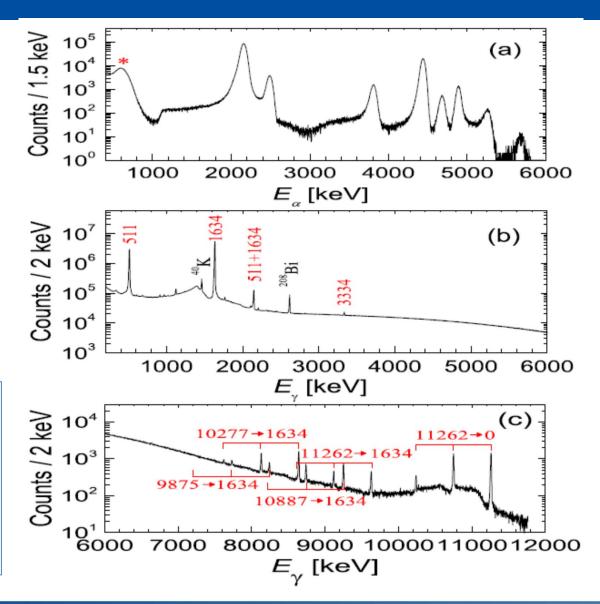
Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

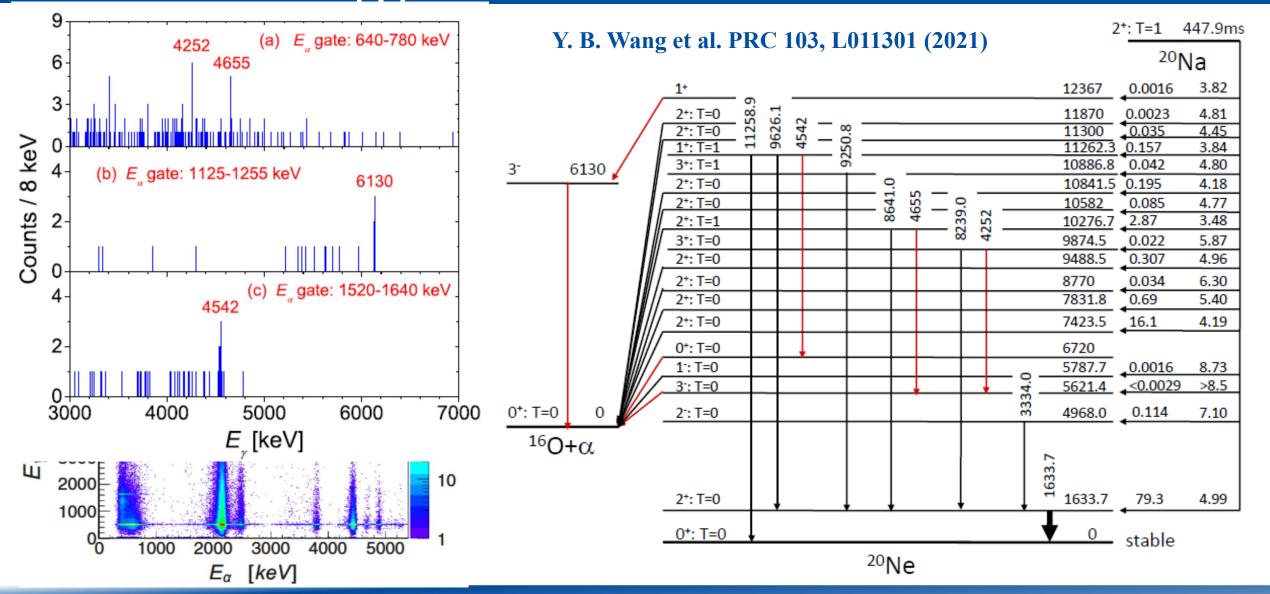
journal homepage: www.elsevier.com/locate/ppnp


Review

Nuclear physics at BRIF

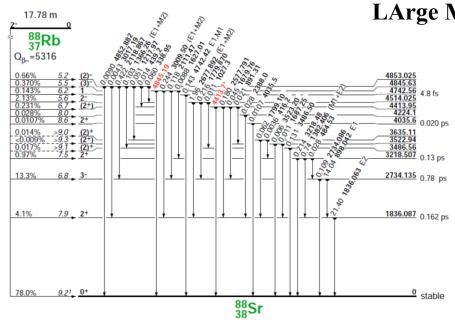

Beijing Rare Isotope Facility (BRIF)

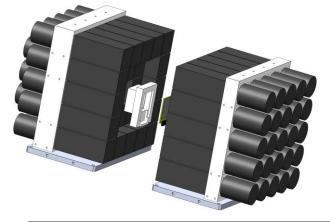
Day-1 experiment: Decay of ²⁰Na

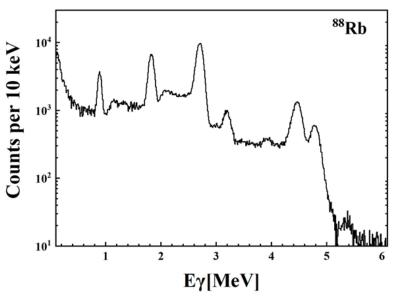


- \triangleright Silicon box for β , two 175% HPGe for γ
- \triangleright two DSSDs for α particles
- > Simultaneous measurement of β , γ and α for triple coincidence
- ightharpoonup Implantation rate: ~1.5×10⁴ pps

Direct observation of $\beta-\gamma-\alpha$ exotic decay mode

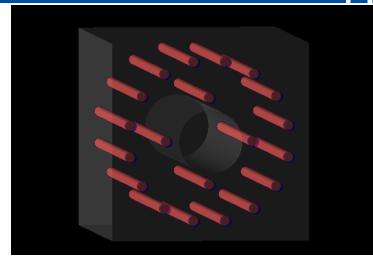


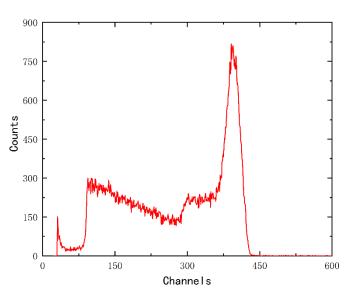

Total Absorption Gamma-ray Spectroscopy (TAGS)



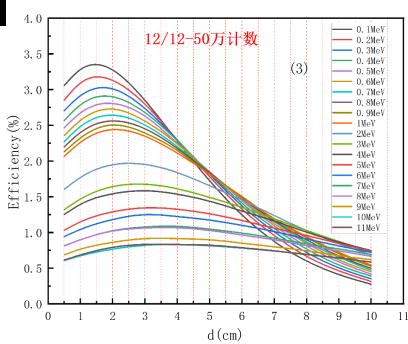
β feeding of 88Rb

Measurements were done for 88Rb,90Rb,140Cs, 142Cs





Ex (keV)	Branching ratio(%)				
in ⁸⁸ Sr	LAMBDA	MTAS	ENDSF		
0	77.8	78.2	76.51		
1836	4.2	4.22	4.94		
2734	13.0	12.8	13.59		
3218	1.10	1.06	1.038		
3486	0.00	0.02	0.016		
3524	0.04	0.03	<0.003		
3634	0.01	0.04	0.005		
4035	0.02	0.014	0.0137		
4224	0.10	0.008	0.03		
4413	0.21	0.47	0.254		
4514	2.20	1.87	2.319		
4742	0.23	0.22	0.178		
4845	0.41	0.59	0.401		
4853	0.81	0.46	0.726		

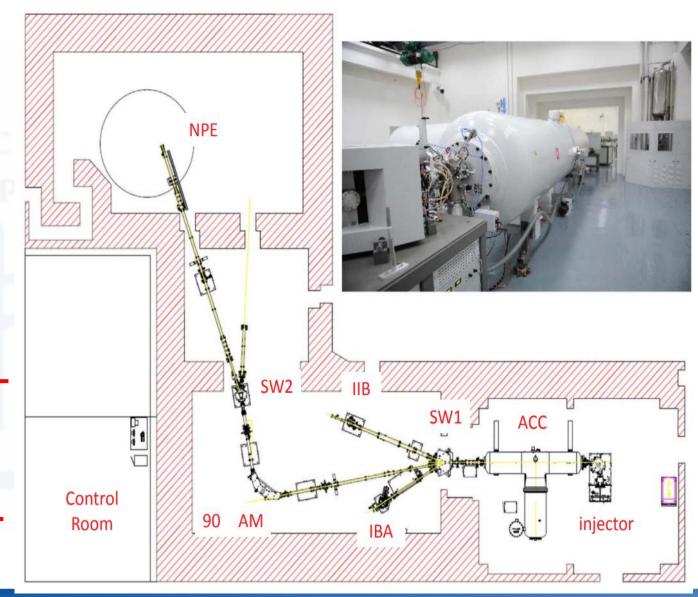

Long HElium-3 Neutron Array (LHENA)

long ³He neutron array for β-delayed neutron emission probability @BRIF

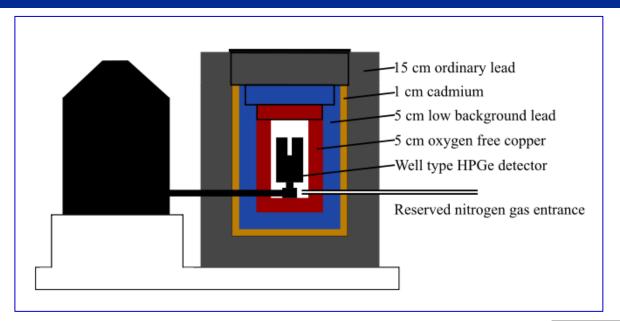
- ➤ GEANT4 simulation
- ➤ ³He tube testing

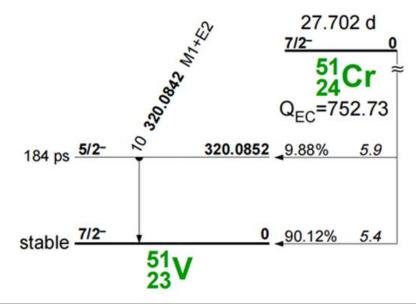
21 3 He tubes, $800 \times \phi 25.4$ mm, 4 atm

Calibration of LHENA with ⁵¹V(p, n)⁵¹Cr

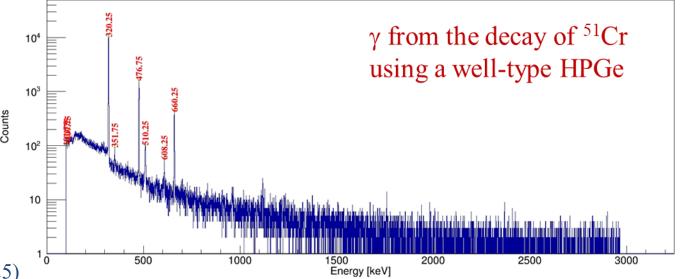


 $^{51}\text{V}:\ 100\ \mu\text{g/cm}^{2}$


Ta backing: 1 mm in thickness

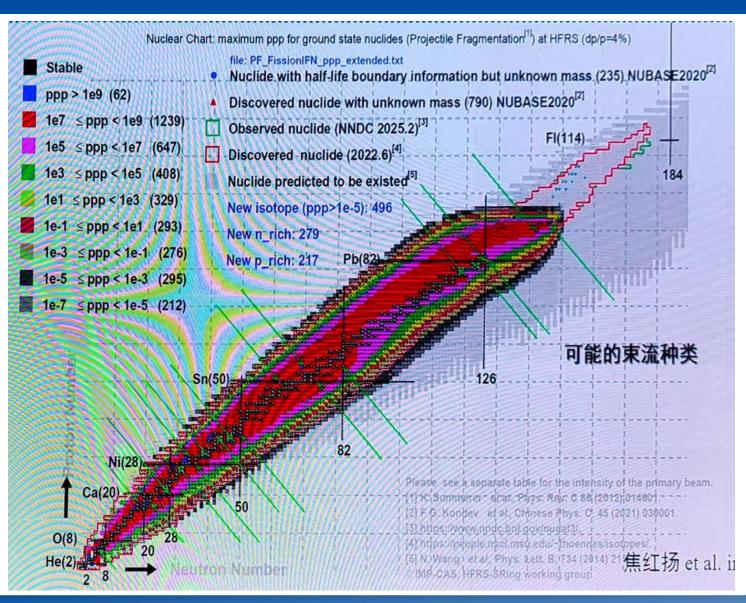

Ta backing: 15 mm in diameter

3 MV Tandem accelerator @Sichuan Univ.

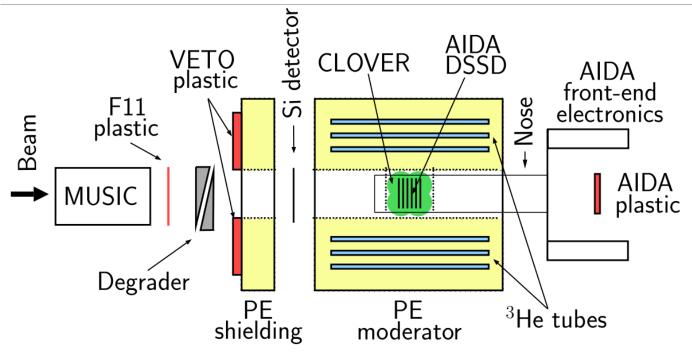

⁵¹Cr by GNAS: Gamma-spectrometer for Nuclear Activation Study

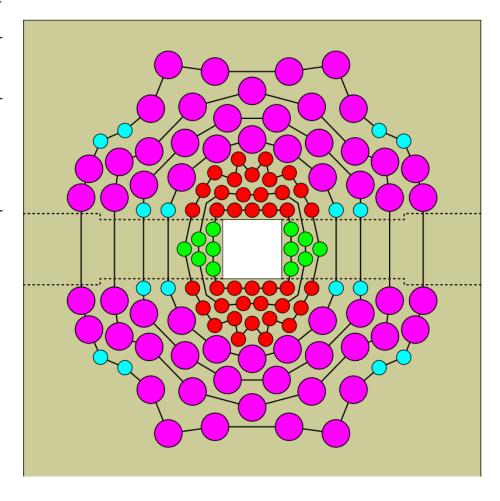
$$\epsilon_n = n'/n$$

$$N_R = \frac{N_{\gamma}}{B \cdot \eta_{320}} \cdot \frac{e^{\lambda t_w}}{1 - e^{-\lambda t_c}} \cdot \frac{\lambda \cdot t_i}{1 - e^{-\lambda t_i}}$$


Min-Hao Zhu, You-Bao Wang* et al. Nucl. Sci. Tech. 36:182 (2025)

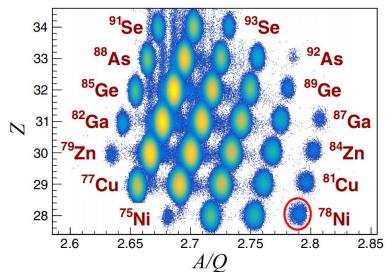
Very neutron rich isotopes at HIAF





BRIKEN @BIGRIPS

Main characteristics (gas volume and pressure) and number of the different types of³He tubes used in the BRIKEN neutron counter.


Туре	Length (mm)	Diameter (mm)	Pressure (atm)	Number
RIKEN	300	25.4	5	24
UPC	600	25.4	8	40
ORNL1	609.6	25.4	10	16
ORNL2	609.6	50.8	10	60

NIM A 925 (2019) 133–147

PHYSICAL REVIEW LETTERS **134,** 172701 (2025)

Neutron emission probabilities and half-lives of 37 β -delayed neutron emitters from ⁷⁵Ni to ⁹²Br were measured at the RIKEN Nishina Center in Japan, including 11 one-neutron and 13 two-neutron emission probabilities and six half-lives for the first time that supersede theoretical estimates

10	• :	REACL	IB-Exp	er. •:	REAC	LIB-Th	eory	/
			•		•	•	•	
$\langle n \rangle^B / \langle n \rangle^R$	_		•		÷			
1	• •	••		••		• • •	• •	
	•		Ť					
10 ⁻¹	Ni	Cu	Zn	Ga	Ge	As	Se	Br
10	12,	16.91	19.0A	9). 3)	£ 20 20 20 20 20 20 20 20 20 20 20 20 20	2/3/	91,3	dr

Nucleus	$T_{1/2}$ (ms)	P_{1n} (%)	P_{2n} (%)
⁷⁵ Ni	331.8(32) [†]	6.20(83)	
⁷⁶ Ni	$234.7(27)^{\dagger}$	8.78(82)	
⁷⁷ Ni	$158.4(44)^{\dagger}$	18.4(15)	
⁷⁸ Ni	$122.2(51)^{\dagger}$	25.8(38)	
⁷⁶ Cu	$637.5(80)^{\dagger}$	6.65(55)	
⁷⁷ Cu	$469.8(20)^{\dagger}$	30.8(13)	
⁷⁸ Cu	$331.7(20)^{\dagger}$	40.2(15)	
⁷⁹ Cu	$241.3(21)^{\dagger}$	59.9(24)	
⁸⁰ Cu	114.0(24)	56.5(28)	< 0.55
⁸¹ Cu	75.8(38)	71.1(57)	2.2(13)
⁷⁹ Zn	839.1(75)	0.62(17)	
80Zn	$562.0(30)^{\dagger}$	1.10(12)	
81 Zn	$303.7(31)^{\dagger}$	18.88(73)	
82Zn	$177.9(25)^{\dagger}$	61.4(25)	
83Zn	$99.7(30)^{\dagger}$	57.4(29)	2.17(44)
84 Zn	$53.6(81)^{\dagger}$	64.0(59)	< 2
⁸² Ga	$600.9(20)^{\dagger}$	25.2(11)	
⁸³ Ga	$308.4(10)^{\dagger}$	84.7(44)	
⁸⁴ Ga	$92.70(70)^{\dagger}$	37.3(22)	1.61(13)
⁸⁵ Ga	91.9(12) [†]	71.2(25)	1.90(16)

- \triangleright HIAF provides exciting opportunities for the study of β-delayed neutron emission for very neutron-rich nuclei of nuclear astrophysics significance.
- ➤ In some cases, BRIF could provide benchmark measurement and cross-check.
- ➤ Need to learn from BRIKEN experiments and start the collaboration at HIAF in time.

Thank you for your attention!