Nuclear Astrophysics Experiments with HIAF

2025年9月3日至5日 Huizhou Branch, IMP Asia/Shanghai 时区

Nuclear Physics Studieswith the MATE TPC

Ningtao Zhang, MATE Collaboration

Institute of Modern Physics, Chinese Academy of Sciences

09/04, 2025

MATE TPC: Multi-purpose Active-target Time projection chamber for nuclear Experiments

Outline

- Motivation
- Development of MATE TPC
 - pMATE→MATE→µMATE→Cylindrical MATE(under design)
- Experimental measurements
- Summary

Reaction and structure studies using TPC

Physics motivation:

- 1, Direct reactions: $(\alpha,p/d)$, (p,α)
- 2, Fusion: primary beam(CC,CO,OO), neutron-rich RIB
- 3, Weak interaction: beta decay, (d,2p), (³He,t)
- 4, Fission(rprocess): (p,p*), (p,2p)
- 5, Giant resonance: (p,p*), (d,d*)
- 6, Nuclear structure: decay, transfer, scattering

Prototype and MATE TPC: timeline

MATE 4000ch TPC

1024ch pMATE (prototype)

GEM by Q. Liu (UCAS)

- Active volume:10cm(W)×20cm(L)×25cm(H)
- Field cage: 3 layers of Be-Cu wires (Φ0.1mm)
- Double THGEMs: thickness 0.3mm
- Rectangular pad: 3×6mm², 1024 pads

Calibration

ThetaZ (deg)

Full scale MATE-TPC

TPC

- √ 30x30x20(h) cm³
- ✓ Double-layer segmented THGEM
- √ 3800 readout channels
- ✓ GET electronics

Si array

- Three silicon walls
- Sensitive area: 100×100 mm²
- Thickness: 600 μm and 150 μm
- Angular coverage ~10%

In collaboration with Prof. Ota (RCNP, CNS)

Alpha measurement by MATE

Commissioning experiment: 12C+12C fusion near coulomb barrier

Experiments

- 12C4+ beam: 4.9 AMeV (HIRFL, IMP)
- TPC gas: C₄H₁₀ at 50, 100 mbar
- Injection rate: 200-400 cps
- Beam time: 31.2 hours

Tracking for different channels

Fusion events with and without α channels

Experimental results

- ¹²C+¹²C→¹²O+3a
- ✓ Consistent with statistical calculations at E_{cm}>15 MeV
- ✓ At E_{cm}<15 MeV, other mechanisms are needed</p>

- ¹²C+¹²C→¹⁶O+⁸Be
- √ At E_{cm}>3MeV, direct a-transfer reaction dominates
- ✓ At stellar energy(<3MeV),
 ⁸Be decay can be detected by TPC

¹⁹O+¹²C reaction: RIBLL beam line for ¹⁹O production

- **Primary beam:** ¹⁸O⁸⁺, 6.17MeV/u, 260enA (HIRFL)
- Primary target: D₂ gas cooled by LN₂ at 150mbar, 500mbar
- Second beam: ¹⁹O^{7+,} 10³-10⁴ pps
 - □ ¹⁸O(d,p)¹⁹O reaction
 - □ purity upto 95%

MATE Conaporation

12

Preliminary results

Study of Z=6 subshell using ¹¹C+α scattering

11,12 C(α,α') in RIBLL

Beam injected into TPC

• ¹²C: 75 MeV/u, ~ 10⁴ pps

• ¹¹C: 55 MeV/u, ~ 10⁴-10⁵ pps

$$d\sigma/d\Omega \propto |b_n^F M_n + b_p^F M_p|^2$$

Tran et al., NC9, 1594 (2018) Furuno et al., PRC100, 054322 (2019)

Beam rate tests and preliminary results

Low-pressure Micromegas-based TPC (µMATE)

Be used at ~70pµA experiment!

Micromegas provided by Zhiyong Zhang*(USTC)

Direct measurement of ¹²C+¹²C

¹²C: 0.38-0.63 MeV/u

Current: upto 80 pµA

Target: thick target

TPC gas: He mixture

Pressure: 90-100 mbar

Background suppression

Modified S* factor (unpublished)

19

(p,α) , $(\alpha,p/d)$ reaction studies with high-intense primary beam

CNO CYCLE

NeNa AND MgAI CYCLES

Ananna et al., Universe 2022, 8, 4.

- Physics: ¹⁵N(p,α)、 ¹⁷O(p,α)、 ¹⁸O(p,α)、 ¹⁹F(p,α)、 ²³Na(p,α)、 ²⁷Al(p,α) are important closed reactions in CNO, NeNa-MgAl cycles, influence isotope ratios.
- High-intense accelerators: 240kV HV at IMP and JUNA-400kV HV (CJPL)
- Experimental methods: TPC+Si or TPC (standalone)

Collaboration with CIAE

Some testing results

Challenges for Cr₂O₃ target

- Target stability
- 11 B(p,α) 8 Be \rightarrow 3α background

AlN target

- TPC track distortion

Cylindrical TPC (under design)

- **Suppress delta rays in RIB experiments**
- Achieve better particle identification
- **■** Extend the measured dynamic energy range

Trigger-less electronics developed at IMP

FEAM chip

FEAT chip

23

Parameter	Value
Gain	1mV/fC
Dynamic range	1pC
Shaping	80ns/160ns/1us
Counting rate	10KHz

	Parameter	Value
	Gain	8mV/fC, 4mV/fC, 1mV/fC, 0.1mV/fC
>	Dynamic range	125fC、1pC、2pC、10pC
	Shaping	80ns / 160ns
	Counting rate	1MHz

Parameter	Value
Dimension	20cm × 19cm (ADC board + ASIC board)
Density	64channels / board
Sampling	40MSPS (maximum)
Resolution	10bit / 12bit
Mode	Continuous (triggerless) / external trigger / fixed rate readout(1k)
Time window	25ns-102.4μs adjustable
Data readout	Full pulse, baseline filter + zero suppression, energy + timing(ongoing)

MATE collaboration Courtesy of ZhiPeng Sun (孙志朋)

Some testing results

- **Setup** in test: 160ns(shape), baseline noise (σ < 1mV)
- In the dynamic range 10fC-1PC(prototype), integral non-linearity (INL) is less than 2%
- Typical energy resolution is less than 2% (FWHM)
- **Typical time resolution is around 1ns (1\sigma)**

cMATE: range, angular resolution (simulation)

cMATE: range, angular resolution (simulation)

cMATE in solenoid (simulation)

Summary

- MATE TPC detectors have been constructed
- □ ¹²C+¹²C, ¹⁹O+¹²C fusion measurements with beam rate ~ 100 cps
- □ ¹⁴N¹⁴O(α,p) (challenging at 10⁵ cps), ¹¹C(α,α') (fine) measurements at 10⁵ cps
- □ ¹²C+¹²C direct measurement at stellar energies with beam intensity ~ 70 pµA
- \Box ¹⁸O(p, α) measurement with beam intensity of ~1 mA
- □ To develop Cylindrical TPC working inside solenoid (under design)