(Nuclear) Charge-exchange reaction and opportunities at HIAF

Bingshui Gao

Institute of Modern Physics

Nuclear Astrophysics Experiments with HIAF Huizhou, Sep. 3-5, 2025

Nuclear decays

Alpha Radiation

Limited to VERY large nucleii.

$$\lambda = \frac{\ln 2}{K} B(GT) \Phi$$

$$B(GT) = \left(\frac{g_A}{g_V}\right)^2 \frac{\langle f||\sigma\tau||i\rangle^2}{2J_i + 1}$$

Electromagnetic

Charge-exchange reaction

- Direct reaction, single step->easy to extract nuclear structure information
- Beam energy: ≥ 100 MeV/u (inline with the HIAF-HFRS energy region)
- Cross section: ≤ mb, beam ≥ 10⁴ pps
- \triangleright Probes: (p,n)/(n,p), (3 He,t)/(t, 3 He), (d, 2 He)

Charge-exchange vs. β-decay

- The same initial and final states
- Very similar operators (στ)

Both charge-exchange reaction and β -decay can study the B(GT)

Charge-exchange vs. β-decay

- β-decay is limited by Q-value window, only probes low-lying states.
- > In stellar environments (high ρ, high T) b-decays have negative Q-value, charge-exchange reaction is the only choice
- Both provide constraints for theory development

- [1] S. M. Couch ApJ 775 1 (2013)
- [2] Hayakawa et al., Quantum Beam Sci. 2017,1, 3
- [3] Schatz et al., Nature 505, 62 (2014)

Applications

And others...

Electron capture rates in CCSNe

Electron chemical potential $\mu_{\rm e}$ (few MeV) overcomes the negative Q value of EC from neutron-rich nuclides

$$\mu_{e} = 0.511 \text{MeV} \left[\left(1.018 \left(\rho_{6} Y_{e} \right)^{2/3} + 1 \right)^{1/2} - 1 \right]$$

Q value:

- Free e-: $Q = M_{11C} + M_{e-} M_{11B}$
- ➤ Binding e- (in atomic shell): $Q = M_{11C} + M_{e-} - M_{11B} - B_{e-}$
- Problem Degenerate e- (in CCSNe): $Q = M_{11B} - M_{11C} - M_{e-} + \mu_{e-}$

Electron capture rates in CCSNe

EC at different stages of CCSNe:

- Pre-supernovaThe iron group
- ➤ Deleptonization

 Neutron-rich region around N~50 closed shell
- Neutrino burstFree protons

1) Pre-Supernovae (iron group)

Dominated by Gamow-Teller transitions:

$$\lambda_{EC} = ln2 \sum_{i} f_{ij}(T, \rho, U_F) B(GT)_{ij}$$

- Independent particle model (FFN rate, 1980s-2000s)
- Interacting Shell Model (LMP rate, 2000s-now)

Note:

Observed neutron star mass lower limit of < $1.2 \ M_{\odot}$ is very difficult to reproduce in stellar models

Significant change of the Pre-SN structure (e.g. Y_e , M_{Fe}) due to the new EC rates

FFN, LMP and experimental data

Comparisons to chargeexchange data:

EC rates change by more than x10:

K. Langanke and G. Martínez-Pinedo, RMP (2003)

Importance of high-resolution data

Most important EC nuclei in pre-SN

<i>T</i> (K)	ρ (g cm ⁻³)	Y_e	$\lambda_{\rm ec}~({\rm s}^{-1})$	Electron capture		
				$15M_{\odot}$		
3.39×10^{9}	4.50×10^{7}	0.480	5.17×10^{-7}	⁵⁴ Fe (29) ⁵⁵ Fe (25	5) 53Mn (11)	
			3.30×10^{-7}		53 Mn (9)	
4.13×10^{9}	2.89×10^{8}	0.450	6.86×10^{-7}	⁵⁷ Fe (54) ⁶¹ Ni (21) 56 Fe (14)	
4.41×10^{9}	1.30×10^{9}	0.442	7.57×10^{-6}	⁵⁷ Fe (22) ⁵³ Cr (14	55Mn (13)	
7.25×10^{9}	9.36×10^{9}	0.432	9.21×10^{-3}	⁶⁵ Ni (14) ⁵⁹ Fe (7)	⁵² V (7)	
				25M⊙		
3.79×10^{9}	2.89×10^{7}	0.487	3.18×10^{-6}	⁵³ Fe (23) ⁵⁵ Co (20)) ⁵⁶ Ni (19)	
4.17×10^9	3.71×10^{7}	0.476	4.23×10^{-6}	⁵⁴ Fe (21) ⁵⁵ Co (14	4) ⁵⁵ Fe (11)	
5.03×10^{9}	1.82×10^{8}	0.456	3.84×10^{-6}	⁵⁶ Fe (17) ⁵⁵ Fe (13	6) 61Ni (10)	
5.57×10^9	5.05×10^{8}	0.449	1.45×10^{-5}	⁵⁷ Fe (16) ⁵⁶ Fe (11		
7.75×10^9	2.42×10^{9}	0.445	1.95×10^{-3}	¹ H (32) ⁵³ Cr (9)		

Heger et al., PRL (2001)

Importance of high-resolution data

M. C. Vetterli et al., PRC 40, 559 (1989) A. L. COLE et al. PRC 86, 015809 (2012)

Charge-exchange & γ-ray spectrascopy

The Coupled-Cyclotron Facility (CCF) and S800 spectrometer + GRETINA at NSCL/FRIB

Charge-exchange & γ-ray spectroscopy

beta decay from excited states

⁶⁰Fe in astrophysics

⁶⁰Fe wanted by astrophysical scientists, dead or alive, high up in the sky, on the moon or deep under the sea!

The 60Fe/26Al Puzzle

Observation: $^{60}\text{Fe}/^{26}\text{Al} = 0.184(42)$

Theory prediction: 60 Fe/ 26 Al = 0.45

[1] W. Wang, et al. ApJ 889, 169 (2020).

[2] S. E. Woosley and A. Heger, Phys. Rep. 442, 269 (2007)

⁶⁰Fe synthesized in stars

⁶⁰Fe produced in:

- Competition between β-decay and n-capture of ⁵⁹Fe determines yield of ⁶⁰Fe
- ightharpoonup Highly uncertain β-decay rate of ⁵⁹Fe, cannot accurately predict yield of ⁶⁰Fe
- Direct measurement of ⁵⁹Fe decay rate from excited states impossible.

Stellar decay rate of ⁵⁹Fe

- ➤ The uncertainty of ⁵⁹Fe decay rate is significantly reduced (from a factor of 10 to 35%), 3 times faster than previously used value.
- ➤ 18 solar mass model calculation shows a decrease of ⁶⁰Fe production by 40%, reducing the tension between observation and calculation (systematic calculations needed to fully investigate the impact of the new ⁵⁹Fe decay rate)

B. Gao et al., PRL. 126, 152701 (2021)

v-process

- The origin of elements in the Universe: BBN, stellar fusion, r-process, s-process, i-process, rp-process, vp-process, v-process, p/γ-process, ···
- Dominated by BBN (up to Li), stellar fusion (up to iron), s and r-process (heavier than iron)
- ν-process: important only when other processes are blocked (CCSNe): ⁷Li, ¹¹B, ¹³⁸La, ¹⁸⁰Ta, ⁹²Nb, ⁹⁸Tc, ¹⁹F, ⁵⁰V, ⁵³Mn。 Their abundances in meteorites provide valuable constraints on stellar models

Aziz et al. AAPPS Bulletin (2021)

Based on West and Heger, ApJ(2013)

v-nucleus: 98Tc

- Cannot be produced by s-,r- or rp-processes
- ightharpoonup v-process is proposed to be the main mechenism: 98 Mo(v_e ,e-) 98 Tc in some model calculations
- Provides constraints on n spectra in CCSNe and evolution history (~My) of the solar system

T. Hayakawa et al., Phys. Rev. Lett. 121, 102701 (2018)

Solar system archaeology

- 98 Tc ($T_{1/2}$ =4.2 My) decays with comparable time scale as the last SN event before formation of the solar system
- Calculate the yield of ⁹⁸Tc from SN, measure the abundance in pre-solar meteorites, then compare the two, see how much ⁹⁸Tc decayed and obtain the time duration

v-nucleus interaction cross section

v-process cross section:

$$\sigma(E_{\nu_e}) = \frac{(G_F \cos\theta_c)^2}{4\pi} [B(F) + g_A^2 B(GT)] E_e' |p_e'| F(Z, E_e')$$

- ➤ B(GT) depends on nuclear structure, to be determined via ⁹⁸Mo(³He,t)⁹⁸Tc charge-exchange reaction (RCNP)
- Other terms are well-known constants or readily calculable factors

Operation mode: Separator + Separator + Spectrometer

By operating the HIRIBL as a Separator + Spectrometer, (t,³He) reactions are readily possible!

Operation mode: Separator + Separator + Spectrometer

Operation mode: Separator + Separator + Spectrometer

(d,²He) and (3He, t) in inverse kinematics is possible by using TPC

(d,²He), (³He,t) using internal target are possible!

Thanks!

