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Nuclear decays

Strong Weak Electromagnetic
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Charge-exchange reaction

➢ Direct reaction, single step->easy to extract nuclear structure 

information

➢ Beam energy: ≥ 100 MeV/u (inline with the HIAF-HFRS energy region)

➢ Cross section： ≲ mb, beam ≥ 104 pps

➢ Probes：(p,n)/(n,p)、(3He,t)/(t,3He)、 (d,2He)
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≥ 100 MeV/u



Charge-exchange vs. -decay

➢ The same initial and final states

➢ Very similar operators (st)

Nuclear transition

4

Both charge-exchange 

reaction and -decay 

can study the B(GT) 
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Charge-exchange vs. -decay

Q-value
window

Ex
-induced nucleosynthesis

[1] S. M. Couch ApJ 775 1 (2013)
[2] Hayakawa et al., Quantum Beam Sci. 2017,1, 3
[3] Schatz et al., Nature 505, 62 (2014)

Urca cooling

CCSN

➢ -decay is limited by Q-value window, 
only probes low-lying states.

➢ In stellar environments (high , high T) b-
decays have negative Q-value, charge-
exchange reaction is the only choice

➢ Both provide constraints for theory 
development
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Applications

Charge-
exchange 
reaction

Electron 
capture rates

-decay from 
excited states

-process 
nucleosynthesis

double  decay

Isospin mixing

And others…
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…



Electron capture rates in CCSNe

Electron chemical potential me 

(few MeV) overcomes the 
negative Q value of EC from 
neutron-rich nuclides

me

Q value：

➢ Free e-： 
Q = M11C + Me- – M11B

➢ Binding e- (in atomic shell)： 

Q = M11C + Me- – M11B – Be-

➢ Degenerate e- (in CCSNe)：

Q = M11B – M11C – Me- + me-
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Electron capture rates in CCSNe

EC at different stages of CCSNe：

➢ Pre-supernova 
The iron group 

➢ Deleptonization

Neutron-rich region around N~50 closed shell

➢ Neutrino burst

Free protons
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1) Pre-Supernovae (iron group)
Dominated by Gamow-Teller transitions:

➢ Independent particle model (FFN rate, 1980s-2000s)

➢ Interacting Shell Model (LMP rate, 2000s-now)

Significant change of the Pre-SN structure (e.g. Ye, MFe) due to the 
new EC rates

Heger et al., PRL (2001)
Heger et al., ApJ (2001)
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Note: 
Observed neutron star mass 
lower limit of < 1.2 M⊙is
very difficult to reproduce in 
stellar models



FFN, LMP and experimental data
Comparisons to charge-

exchange data:

K. Langanke and G. Martı ́nez-Pinedo, RMP (2003)

EC rates change by more 

than x10:
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Importance of high-resolution data
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Heger et al., PRL (2001)

Most important EC nuclei in pre-SN 



Importance of high-resolution data
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M. C. Vetterli et al., PRC 40, 559 (1989)
A. L. COLE et al. PRC 86, 015809 (2012)



Charge-exchange & -ray spectrascopy

The Coupled-Cyclotron Facility (CCF) and S800 spectrometer + GRETINA at NSCL/FRIB

59Co

Image from S. Noji

GRETINA

3H

3He

59Co

Measure cross section, 
then obtain B(GT):
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Charge-exchange & -ray spectroscopy
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Singles data

Coincident data

Angular distribution

B.Gao et al., PRC 112, 024615 (2025)
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beta decay from excited states
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Thermal population
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60Fe in astrophysics

Lunar sample

Deep sea crust

Antarctic snow

-ray telescope

60Fe wanted by astrophysical scientists, 
dead or alive, high up in the sky, on 
the moon or deep under the sea!

16Nuclear Astrophysics Experiments with HIAF, Huizhou, Sep. 3-5, 2025



The 60Fe/26Al Puzzle

Observation: 60Fe/26Al = 0.184(42)

Theory prediction: 60Fe/26Al = 0.45

[1] W. Wang, et al. ApJ 889, 169 (2020).

[2] S. E. Woosley and A. Heger, Phys. Rep. 442, 269 (2007)

26Al

60Fe

CCSNe

17Nuclear Astrophysics Experiments with HIAF, Huizhou, Sep. 3-5, 2025



60Fe synthesized in stars
60Fe produced in:

➢ Competition between -decay and n-capture of 59Fe 
determines yield of 60Fe

➢ Highly uncertain -decay rate of 59Fe, cannot accurately 
predict yield of 60Fe

➢ Direct measurement of 59Fe decay rate from excited 
states impossible.
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Stellar decay rate of 59Fe

➢ The uncertainty of 59Fe decay rate is significantly reduced (from a factor of 10 to 35%), 3
times faster than previously used value.

➢ 18 solar mass model calculation shows a decrease of 60Fe production by 40%, reducing
the tension between observation and calculation (systematic calculations needed to
fully investigate the impact of the new 59Fe decay rate)

B. Gao et al.,PRL. 126, 152701 (2021)
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-process

Aziz et al. AAPPS Bulletin (2021) Based on West and Heger, ApJ(2013)

➢ The origin of elements in the Universe：BBN, stellar fusion, r-process, s-process, i-process, rp-
process, vp-process, v-process, p/-process, …

➢ Dominated by BBN (up to Li), stellar fusion (up to iron), s and r-process (heavier than iron)

➢ -process: important only when other processes are blocked (CCSNe): 7Li, 11B,  138La, 180Ta,  92Nb, 
98Tc,  19F, 50V, 53Mn。Their abundances in meteorites provide valuable constraints on stellar models
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-nucleus: 98Tc

➢ Cannot be produced by s-,r- or rp-processes

➢ -process is proposed to be the main mechenism: 98Mo(e,e
-)98Tc in

some model calculations

➢ Provides constraints on n spectra in CCSNe and evolution history (~My)
of the solar system

CCSNe

T. Hayakawa et al., Phys. Rev. Lett. 121, 102701 (2018)
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Solar system archaeology

• 98Tc (T1/2=4.2 My) decays with comparable time scale as the last SN 
event before formation of the solar system

• Calculate the yield of 98Tc from SN, measure the abundance in pre-solar 
meteorites, then compare the two, see how much 98Tc decayed  and 
obtain the time duration

98Tc

R- & -process
Supernovae
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-nucleus interaction cross section

-process cross section：

➢ B(GT) depends on nuclear structure, to be determined via
98Mo(3He,t)98Tc charge-exchange reaction (RCNP)

➢ Other terms are well-known constants or readily calculable
factors

IMAGE CREDIT: DOE'S JEFFERSON LAB
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Opportunities at HIAF
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Opportunities at HIAF

25

Operation mode: Separator + Separator + Spectrometer

By operating the HIRIBL as a Separator + Spectrometer, 
(t,3He) reactions are readily possible!
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Opportunities at HIAF
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Operation mode: Separator + Separator + Spectrometer

(p,n) reaction in inverse
kinematics is possible!
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Opportunities at HIAF
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Operation mode: Separator + Separator + Spectrometer

(d,2He) and (3He, t) in inverse kinematics is 
possible by using TPC
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Opportunities at HIAF

(d,2He), (3He,t) using
internal target are possible !

28Nuclear Astrophysics Experiments with HIAF, Huizhou, Sep. 3-5, 2025



Thanks!
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