Study of alpha clusters in 12C and 16O using RAON and Recent Activities for China-Korea collaboration

Yongsun Kim (Sejong University)

Nuclear Astrophysics Experiments with HIAF Meeting

Huizhou, Sept 3, 2025

RAON - RIB facility in Koea

- Rare Isotope Accelerator complex for ON-line Experiments
 - RAON means joyful in Korean
- Located in Daejeon
- Started operation in 2024
- Second year (2025) run will begin very soon with stable beams of Ne-20 and Ar-40 beams at low energy around 10 MeV/u

LAMPS experiment

- Low energy ALMPS experiment for ~10 MeV beam
- High energy LAMPS experiment for ~100 MeV beam (SCL2 upgrade in future)

High Energy LAMPS experiment

- LAMPS: Large Acceptance Multi-Purpose Spectrometer
 - TPC with $\sim 3\pi$ sr acceptance for tracking charged particles
 - Beams with energies up to 250 MeV/u for ¹³²Sn and intensity as large as 10⁸ pps
 - Useful system not only for nuclear EoS, but also for nuclear structure studies

High Energy LAMPS experiment

Low-Energy LAMPS experiment

LaBr3 gamma detector w/ precise

Active target time projection chamber

Active Target TPC

LaBr3 gamma detector w/ precise

1.5 TSC magnet

This talk will focus on this part!

Active target time projection chamber

Alpha clusters in nuclei

- Clustering phenomena in alpha-conjugate nucleus and molecular states with alpha cores are of interest for low-E LAMPS experiment
- Search for linear chain and exotic geometry of alpha clusters will be studied as well
- LMAPS AT-TPC is designed to measure alpha tracks all the way down to the collision vertex

Observables

Search for Direct 3α decay

- Signature of BEC-like alpha condensate
- No statistically significant observation was made
- Major background is sequential decay

$$^{12}C_{\text{Hoyle}} \rightarrow \text{8Be} + \alpha \rightarrow \alpha + \alpha + \alpha$$

Search for Hoyle-like state in ¹⁶O

- Strong candidate for α -cluster of in $^{16}{\rm O}$
- If exists, 4α decay must be observed
- 4α threshold E = 15.1 MeV

Branching Ratio of direct decay in Hoyle state

Dedicated detector

TPC-Drum

- Active target TPC (768 ch)
- 8 Si-Csl array (176 ch)
- He (90%) + CO₂ (10%) gas
- GET electronics (4 AsAd + 1 CoBo)

Dedicated detector

- Collision system : ${}^{20}\text{Ne} + \alpha$ at 10 MeV/u
- The detector must measure multiple α 's with high precision
- Energy will be measured using Si (thickness = 1 *mm*)
 - Resolution for α is 40 50 keV
- Momentum vector will be determined by TPC part
 - A spatial resolution ~150 μm translates to an angular resolution of ~0.004 mrad

Detector status

Ready for experiment

- Tested with cosmic ray and Am-241
- Position-dependent calibration for triple-GEM gain using Fe-55

Alpha track measurement

- Am-241 (E = 5.44 MeV, 5.49 MeV)
- Average track length is 11.5 cm, consistent with SRIM simulation
- Cluster size in data is close to that of MC
 - Good grip for resolution!

Event displays for measured one- and two-lpha tracks using Am-241 source

Detector design and simulation

Simulation of ²⁰Ne + $\alpha \rightarrow$ ¹²C + ¹²C_{Hoyle} \rightarrow ¹²C + 3 α

Detector simulation

• Simulation of ²⁰Ne + α \rightarrow ¹²C + ¹²C_{Hoyle} \rightarrow ¹²C + 3α

Reconstruction of invariant mass

Hoyle state

4-vector of α particles are obtained

- E measured by Si part
- $\vec{p}/|\vec{p}|$ measured by TPC part
- $|\vec{p}\,|$ calculated using α mass

Reconstruction of Hoyle state

Hoyle state

4-vector of α particles are obtained

- E measured by Si part
- measured by TPC part
- $|\vec{p}|$ calculated using α mass

TPC-Drum (Toy MC simulation)

8.1

Separation of Signal to Background

Background: Sequential decay

Signal: Direct decay

Lab frame

Separation of Signal to Background

Background: Sequential decay

Signal: Direct decay

Reconstructed in ¹²C* frame

Separation of Signal to Background

Experiment at RAON

Extrapolation from Barbui (2018) [1]

- 20 Ne, E = 9.7, 12 MeV/u
- 4He gas as the active target
- Obtained ~1,000 Hoyle states from 3.82×10^{10} Ne particles
- Si telescope located at the similar position with TPC-Drum

Beam time at RAON

- We got 5 days (= 40 hours) of beam time at RAON in Spring 2026
- We proposed to take 10⁵ pps Ne beam at 10 MeV/u
- Expect to get ~10k Hoyle states and ~200 16O $\,
 ightarrow\,4\alpha$ events

	Barbui (2018)	For this experiment
²⁰ Ne + ⁴ He collisions	3.82 x 10 ¹⁰	2.7 x 10 ¹⁰
Collected Hoyle state	~1000	~10,000
Collected ¹⁶ O (15.1 MeV)	~20	~200

PRC 98, 044601 (2018)

[1] Phys.Rev.C 98 (2018) 4, 044601

Next generation LAMPS AT-TPC

Signature of Ver.3

- 1024 4096 channels
- Operation in magnet

20x20 cm² GEM foils

OO collision at LHC

Chinese Physics C Vol. 47, No. 2 (2023) 024105

Signals of α clusters in ¹⁶O+¹⁶O collisions at the LHC from relativistic hydrodynamic simulations*

Chi Ding (丁驰)¹ Long-Gang Pang (庞龙刚)^{1†} Song Zhang (张松)^{2,3‡} Yu-Gang Ma (马余刚)^{2,3§}

¹Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China ²Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China

³Shanghai Research Center for Theoretical Nuclear Physics NSFC and Fudan University, Shanghai 200438, China

- Simulation study shows the deformation signal of ¹⁶O can be observed from the multiplicity distribution in OO collision at LHC energy
- Clustering structure is of interest for two energy extremum (10 MeV and 10 TeV), providing unique complementarity

China-Korea Bilateral collaboration project

- Selected as a NSFC-NRF supported project for 2023 2025 to promote the experimental and theoretical collaboration for nuclear physics research
- PI: Yongsun Kim (Korea), Zhaoqing Feng (SCUT)

CEE Detector at HIAF

- Symmetry energy measurement O(1) GeV
- TPC working in the dipole magnet

TPC and AT-TPC at RAON

- Symmetry energy at O(200) MeV
- Both are cylindrical shapes and operates in 1 T and 1.5 T solenoid

We have many common physics topics and technical challenges!

China-Korea Bilateral collaboration project

- 1st in Lanzhou Nov. 2023
- 2st in Seoul August 2024
- 3rd in Guanzhou Nov. 2024
- 4th in Jeju island July 2025

China-Korea Bilateral collaboration project

Prospect collaboration in future

- Many rooms for collaboration
 - Development of new TPC electronics (upgrade or replacement of GET?)
 - Software and reconstruction algorithm for TPC
 - Measurement of same observables at two complementing energies at HIAF and RAON
- Hopefully, this can be a good example for larger Asian nuclear physics collaboration, extending the recent A3 effort.

Summary

- With the goal of exploring exotic alpha-cluster structures, we aim to measure the direct decay of Hoyle states and the 4α decay of ¹⁶O states, which are phenomena of increasing interest in the nuclear physics community.
- The TPC-Drum is ready for precision measurement
 - Good energy resolution of Si ⊗ Good angular resolution of TPC
- We have conducted a two-year bilateral program on nuclear physics collaboration between China and Korea
- I hope to continue and further expand this effort, creating synergy by combining the complementary strengths of HIAF and RAON.

BACKUP